

Kaiser Bessel gridding kernel for seismic data regularization

Akshay Gulati¹ and Robert J. Ferguson¹

Summary

- Data regularization is an important aspect of seismic processing.
- ▶ Many regularization techniques exist, but many are impractical for use on large data sets, due to their dependency on simple Discrete Fourier transform (DFT), which has complexity of $O(N^2)$
- Non uniform fast Fourier transform (NFFT) that use Gaussian filters are being used in industry, but are not able to effectively estimate Fourier components in presence of high decimation.
- ▶ We adopt a modification of the NFFT from the medical imaging field that uses Kaiser Bessel functions as a filter instead of a Gaussian.
- Compared to the Gaussian NFFT, Kaiser Bessel NFFT performs better in cases of high trace decimation.
- ► The algorithm is tested on a synthetic section of three seismic events with different dips and amplitudes.

How it works

- Direct Fourier transform responsible for major computational cost, which is replaced by Kaisr Bessel NFFT.
- NFFT is based on convolution of irregular grid with the Kaiser Bessel filter g(x), followed by Fast Fourier transform.
- In Fourier domain deconvolution is carried out with Inverse Kaiser Bessel filter 1/G(m) for correction to convolution in spatial domain.

► Fig.1: Flow chart representation for Proposed Methodology.

▶ Fig.2: Kaiser Bessel window for various value of β in spatial domain and its Fourier domain representation.

Methodology

- ▶ Calculate the direct forward transform of the irregular data via NFFT using Kaiser Bessel.
- ▶ Compute Hessian operator of the NFFT
- Solve the normal equation formed from the Hessian.
- ► Compute the inverse Fast Fourier transform attain the regularized data.

▶ Fig.5: Reconstruction for 80% randomly decimation.

Acknowledgement

► We wish to thank the sponsors, staff and faculty of the Consortium for Research in Elastic Waves Exploration Seismology (CREWES) for their support of this research.