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ABSTRACT

This year we have lain some of the groundwork for a scattering theoretic
description of anelastic wave propagation. The aim is to create a framework for
(1) describing the diffraction and conversion of anelastic waves in heterogeneous
media, and (2) directly inverting P, S, and converted wave data taken over
dissipative media. This includes expressing reference and perturbed anelastic
wave equations in diagonalized forms, which are then prepared for inclusion in
an appropriate Scattering, or Lippmann-Schwinger equation. We have also
extended the 2009 discussion on AVF/AVA inversion of anelastic reflectivity to
incorporate attenuating reference media, and more general attenuation laws. In
this poster we summarize some of this work.

Anelastic scattering & reflectivity

Our scattering problem at its most general involves an appropriate casting of
reference and perturbed anelastic wave equations, and a scattering potential in
the form of a tensor whose elements describe interaction and conversion
strengths (FIG 1).

The geophysics literature contains numerous reports of one type of anelastic
scattering: frequency-dependent seismic data anomalies associated with
attenuating targets. Some researchers have attributed these to the presence of
a strong absorptive reflection coefficient, which, indeed, according to wave
theory, places a characteristic imprint on the data. This represents a potentially
important source of information of direct relevance to, e.qg., reservoir
characterization. One of the objectives of the work presented here is to develop
theoretical insight into the problem of extracting this information.

An absorptive reflection coefficient can be analyzed mathematically and
ultimately inverted by considering either its frequency variations (i.e., AVF), or its
angle variations (i.e., AVA). We emphasize in particular the issue of separability --
- if, and how, it is possible to determine variations in multiple an-acoustic or
anelastic medium properties, including Q, occurring simultaneously at a reflecting
boundary.

FIG. 1. Schematic diagram containing the general elements of the anelastic scattering problem. This includes wave
equations describing propagation in a smooth or homogeneous background medium (white) and a discontinuous
perturbed medium (green), and perturbation operators V describing the difference between the two. The perturbed
field ys is the result of a nonlinear combination of the reference field and V.

AVF/AVA modeling and inversion

We have made progress by considering the scattering sub-problem of
modeling and inverting anelastic reflectivity. The scattering problem reduces to
an expansion of the reflection coefficient about P-wave velocity and Q
perturbations a. and a,:
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This and other forms may be truncated at various orders and examined as
approximations (FIG 2).
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FIG. 2. Various AVA plots of attenuative R. Top row: exact R for a range of angles and target Q values (left), and a
range of angles for low Q=10 (right). Middle row: linear approximation (on the right the approximations is dashed,
compared to exact in black). Bottom row: second order approximation vs. exact. We conclude nonlinear R(Q)
relationship will play an important role, with second order corrections likely sufficient.

The ‘anacoustic’ problem generalizes to the anelastic problem by segmenting
the determinants of the Zoeppritz equation based on order in any of five
parameter contrasts (Vy, Ve, p, Qp and Qg; for details, please see report):
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Which may be used for modeling (FIG 3) and direct inversion (FIG 4).
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FIG. 3. R, and R; over a strongly anelastic target. Left column: exact coefficients; middle column:
first order approximate; right column: second order approximate.
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FIG. 4. Linear AVF recovery of Qp and Qs from reflectivity measurements over a range of frequency
pairs. Left column: actual Qp=Qs=5; right column: detail of same.

CONCLUSIONS

In addition to continuing with the basic theory, Bird et al. (this report)
are designing a set of procedures for extraction of these reflectivities
from the seismic trace. In the coming year we will incorporated the
lessons of the reflectivity study into the more general anelastic
scattering problem.



