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ABSTRACT

In AVO/AVA inversion, a linearized form of the Zoeppritz equations known as
the Aki-Richards approximation and variants are used to model R,  This
approximation can be viewed as a linear decomposition of the full reflection
coefficient into contributions from the reflectivities of individual medium
parameters. A forward/inverse series framework leads to an alternative
approach to this type of decomposition. The first order terms in the
decomposition are qualitatively similar to the Aki-Richards approximation, with
second- and third-order terms correcting the approximation at large angle and
large contrast. We test the approach both for acoustic and elastic reflection
coefficients. In the elastic case, where forward/inverse methods of the kind we
use require both the incorporation of R, and R;, we proceed in an approximate
fashion using R, only. The elastic nonlinear corrections, in spite of the
approximation, provide a significant increase in accuracy over the linear/Aki-
Richards approximation in several large contrast/large angle model regimes.
Separately determining individual reflectivities could provide useful input to
bandlimited impedance inversion algorithms, or the ability to extrapolate data
from small to large angle.

Introduction

Practical inversion of amplitude information in reflection seismic data is based
on linear-approximate solutions of the Zoeppritz equations, in particular that of
Aki & Richards (hereafter AR). Although the Zoeppritz equations can be solved
numerically, the linearized solutions have historically won out over the more
complex exact forms as practical tools. One of the reasons for this is that the
linear approximations represent direct decompositions of the full R, coefficient
into weighted contributions from reflectivities due to individual parameter
variations (e.g., Goodway et al., 2006), seen in the fractions Ap/petc.:
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The power of this type of decomposition, beyond its simplicity and easy-to-
analyze form, is that, with individual reflectivities in hand, well-developed
methods for normal-incidence, single-parameter bandlimited impedance
inversion may be straightforwardly employed to complete the inversion.

In this paper we will take another approach, using the tools of direct inversion,
originally developed for the determination of parameter contrasts from reflection
amplitudes, to perform the decomposition. We begin by considering various
acoustic configurations, i.e., reflections from contrasts in sets of parameters with
acoustic analogues (e.qg., including P-wave velocity, density, Q, etc., but not S-
wave velocity). We develop a formula for the linear and nonlinear reconstitution
of the full acoustic multiparameter reflection coefficient in terms of the relevant
individual reflectivities. Remarkably, within this multiparameter acoustic
configuration, the same formula is found to approximate R, regardless of which
parameters vary, how many of them vary, and regardless of which experimental
variable(s) R varies over. We then proceed to the elastic problem. The resulting
formulas are only approximate, since the full problem must be posed using
contributions from both R, and R reflectivities, but in many regimes of large
contrast/angle the accuracies of the approximate reconstitutions of R, greatly
exceed that of the AR approximation. We end by discussing some of the
consequences of this approach to AVO modeling and to inversion, and some
potentially fruitful directions in which to push this research in the near future.

Acoustic case

Let R, be the reflection coefficient associated with an interface across which N
acoustic parameters, u=(Y,, M, ... My), have varied, from p in the incidence
medium, to p! in the target medium. For instance, these y might represent P-
wave velocity and density, in which case p= (c,p) varies from pY=(c%pY) to
pi=(c!,p'). We introduce N additional reflection coefficients R, = (R,;,R »,...R y),
where R is the reflection coefficient associated with an interface across which
only y; has changed. For instance, R, is the reflection coefficient associated with
an interface across which density varied from p° to p!, and all other parameters
remained constant. The full R, is decomposable into the individual reflectivities

through, explicitly to third order,
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...with fifth-order and higher corrections available if desired.

Example I. If the P-wave velocity of an acoustic medium ¢, varies
across a boundary to become c¢,, and the medium takes on a finite Q,, we
have that

R(w) = Re + Ro(w) — [R;Ro(w) + RS (w) R,

Where R. = (¢;-¢y)/(c,+Cy) etc. are the simple 1-parameter reflectivities. In
FIG. 1 the first, third, and fifth order reconstitutions of R are plotted against
the exact value for a range of frequencies.

Example II. If the P-wave velocity of an acoustic medium ¢, and its
density p, varies across a boundary to become ¢, and p,, and the medium
again takes on a finite Q,, we have that

R =R, + Rp u RQ
— R2(R, + Rg) — R5(R. + Rq) — R)(R:.+ R,) — 2R.R,Rq + ...
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FIG. 1. Anacoustic reflection coefficient approximations. Black: exact; blue: linear; red: third order; green: fifth
order. Top left: model 1; top right: detail. Bottom left: model 2; bottom right: detail.

Elastic case

Let us consider the extension of the previous methods to the three
parameter elastic case. For an incident P-wave, there are two reflected
modes, PP and PS. In order to correctly decompose either R, or Rc using
our approach, both data types must be invoked. We leave that for future
research. Posing the inconsistent version of the problem, involving R, only,

IN  many important

large contrast circumstances

highly accurate

approximations are produced. R, is decomposed in terms of V, V. and

preflectivities through the formula

Rp(0) =R1(0) + R2(0) + R3(0) + ...

where

R1(0) = Ra(0) + Rs(0) + R,(0),
Ry(0) = W1 R5(6)

W2 Rp(0)R,(0),

etc. Higher orders and the factors W, which are simple functions of
incidence angle 6, are included in the companion report. The reconstitution
of Ry(0) for 3 large contrast models are examined in FIG 2. The linear
result (in blue) is often close to the AR approximation in relative error.
Already at third order, R, magnitudes out to the critical angle track very

well with the exact values.
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FIG. 2. Decomposition of elastic RP into 1-parameter reflectivities. Black: exact RP; blue: linear
decomposition; red: third order. This approximation seems to perform particularly well in comparison
to the AR approximation when either all three parameters undergo large contrasts, or VP and

pundergo large contrasts.

CONCLUSIONS

There are several ways these relationships could be used. Each
constitutive reflectivity could be estimated and evaluated at 6=0. Then,
impedance inversion could determine multiple parameter profiles. Also,
extrapolation from limited offsets becomes more stable given increased

modeling accuracy.

Finally, there is no reason to limit ourselves to

V,o/V</p. Standard impedance, or Lame impedance reflectivities could be
used as the underlying “basis functions” if desired.



