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Summary Preconditioning Operators

To optimize irregular nonstationary phase shift, we introduce implicit and explicit . . . . .
preconditioned conjugate gradient frameworks. The implicit scheme gives faster TS Io.oz
convergence, resulting in decreased runtime over the standard inversion. This speedup = s e
comes at the cost of accuracy, as deriving the implicit scheme involves approximating
the evanescent filter portion of the operator. An explicit scheme is proposed to mitigate
this error, but it fails to perform as expected, resulting in slower convergence than the
standard scheme.
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The speed of the implicit scheme suggests that a preconditioning operator exists that 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 20 40 60 80 100 120 20 40 60 80 100 120
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reduces the runtime of the method without sacrificing accuracy, although this operator (a) (b) (c) (d)

has yet to be determined. Therefore the implicit scheme can be used as an ideally fast Figure 1: Output for the nonpreconditioned scheme. (a) The recovered wavefield. (b) The difference between the recovered wavefield and the source. (¢) The number of CG

algorithm to estimate the asymptotic complexity of the method. A sample of runtimes is iterations required at each frequency. (d) The residual error of the output at each frequency.

collected for trace gathers of up to 2'° traces, and polynomial regression estimates that
for n traces, the number of conjugate gradient iterations required is O(n%°1°%) and the — I —— I
0.02 0.02

total runtime is O(n'-%%2). This is a promising result, as an accurate preconditioned B =
scheme that approaches this runtime would be feasible for use on large 3D surveys. ' - 10,01

Irregular nonstationary phase shift
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» The phase shift method quickly extrapolates a regularly sampled wavefield through a

homogeneous medium. , | , /‘—h\\\ 0
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» The method acts on plane waves, multiplying the Fourier coordinates by a complex D0 et Gy 0 20 D0 et Gy 0 20 P Vhequency (g Frequency (12

- . . . . (a) (b) (c)
exp.onentlal in the wavelike region, and a real negative exponential in the evanescent Figure 2: Output for the implicit preconditioning scheme. (a) The recovered wavefield. (b) The difference between the recovered wavefield and the source. (c) The number of
region.

CG iterations required at each frequency. (d) The residual error of the output at each frequency.

» When the medium velocity varies with depth, we can phase shift iteratively through a
series of constant velocity depth steps.
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» For a laterally variable medium, we use nonstationary phase shift operators to estimate _ | | | 'R, | | ! ' W,
the wavefield at each depth step. e
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» If the wavefield is sampled irregularly, but the samples are on a regular grid with some =i . 0-01

samples missing, we can use weighted-damped least squares to extrapolate the E o | R
wavefield by computing matrix inverses on normal equations. ‘ s - :
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» Computing linear inverses directly is much more computationally expensive than a
forward phase shift, and is infeasible for large 3D surveys.
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Preconditioned Conjugate Gradients @ (b) | | (c) | d)
Figure 3: Output for the explicit preconditioning scheme. (a) The recovered wavefield. (b) The difference between the recovered wavefield and the source. (¢) The number of

» The conjugate gradient method reduces the computational effort to that of the CG iterations required at each frequency. (d) The residual error of the output at each frequency.
nonstationary phase shift operator, multiplied by some unknown iterations function.

» Without preconditioning, this inversion converges quickly for high frequencies and poorly

| Asymptotic Complexity Runtimes
for low frequencies.

» Poor convergence in the low frequencies is caused by the action of the phase shift in the The implicit scheme is much faster than the unconditioned scheme, so we can _ O Oberved 00 teratios | - W Commtsmm
evanescent region. use it to estimate a lower bound on the asymptotic complexity of the method.

» An approximation can be made that will allow the evanescent filter portion of the We run the inversion on a random sample of survey sizes, and record the
operator to be factored out of the normal equations. number of iterations required as well as the total runtime. The number of

» This new linear system can be solved in fewer iterations, but the approximation affects iterations is almost constant, so the total runtime is roughly equivalent to that
the quality of the output image. of the forward operator.

» This is an implicit form of preconditioning, so we should be able to do the same thing
explicitly, and achieve a similar speedup with no loss in image quality, as no
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approximation Is required. The authors wish to thank the sponsors, faculty, staff and students of the (a) x10 ) x10

» Performing the same inversion on the original system, with the factored portion as the Consortium for Research in Elastic Wave Exploration Seismology (CREWES), Figure 4: (a) The number of CG iterations vs the number of traces for the implicit
preconditioner, results in slower convergence than the unconditioned system. and the Natural Sciences and Engineering Research Council of Canada preconditioning scheme. (b) The total runtime of the inversion vs the number of traces.

» The implicit system suggests that there exists a preconditioner that will achieve a (NSERC, CRDPJ 379744-08) for their support of this work. Special thanks to Regression estimates that the iterations function is O(n°°'°®), and the total runtime
comparable speedup without sacrificing accuracy. Matt McDonald for his advice on optimization. function is O(n19%2).
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