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‘ 1. Introduction I

The numerical experiments described in this work were conceived as a test of how the technique of
least squares Padé approximation could be used in a typical seismic data processing application. We
considers rational Padé approximation of the Z-transform function of a time dependent minimum
phase signal. We review the derivation of reflection multiples for a double interface, and observe the
multiple signal can be modelled by an infinite impulse response (IIR) filter of a simple form, with
coefficients determined by the reflection and transmission parameters. The Padé method features a
numerical approach that works directly on the data - there is no need to transform to the Fourier
(or other) domain. We set up the Padé approximation problem using the seismic data directly, with
some choice on the rational function form to reduce the dimension of the solution space. The rational
([p, q]-Padé) approximation of the Z-transform function is formulated as a constrained least squares
minimization problem with regularization constraints provided by the minimum phase signal. Results
of some numerical experiments in building the Padé approximating filter, and its use as an inverse
filter to remove the multiples demonstrate the effectiveness of the presented approach.

‘ 2. Multiple Reflections and Transmissions I

Single Interface With an incoming wave eHWtHkiZ) on the right of the interface at * = 0, the
transmitted and reflected waves are generated as Tetwitha) jnd Retlwt—kiz) respectively. The
continuity of the total waveforms and the normal derivatives at the point x = 0 gives

T—R=1 rT+R=1, (1)
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Incoming
where = ko /kq is the relative index of refraction with the /
wave numbers ki (right medium) and kg (left medium).

The reflection and transmission coefficients are given by / \
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If we reverse directions, then we have

Figure 1: A reflection and transmission
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’ event across a single interface at x = 0.

Two Interface There will be multiple internal reflections. The total reflectivity is given by
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where
Ry =RL Ry=T.DR? DT Ry =T-DR? DI[RL.DR? D|T.. (4)
The coefficients T"'s and R's are constants, Ry, can be written as
~1
Ryjta = a+0b (1 - cD2) . for some constants ¥/, c. (5)
The transmission terms can be derived analytically as m2 Inl
Tl = T(2_ DT}_ Incoming

Ty = T2 D[RL DR? DITL
Ty = T2 D|RL. DR? DP*TL

so that the effective transmission 7} .;,; is given as
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Again noting the constants in (6), 7T}, can also be writ- / Reflect 3
Trans 3

ten as

Figure 2: Reflection and transmission
events across two interfaces.

/
N v
\

Reflect 2

e
Ttota,l — ZT<2—D [RLDR?—D]TLT}—
n=1

—1
— 72D (1 _ RLDR?_D) L. (6)

NNN

—1
Tiota = V' D (1 — cD2) . for constants ¥/, ¢.  (7)
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‘ 3. Modelling with IIR filters I

The two responses Ry, and T, can be modelled with Infinite Impulse Response (IIR) filters
of very similar form. The related IIR filters of Ry, and T}, are given by the following rational
functions

b o+ B2 y 29
G(z)=a+ — , H(z) = , 3
2 1 —cz2d 14 pe2d =) 1 — cz2d (8)
respectively, where &« = a + b, § = —ac, and n = —c are related to the multiple reflectivities, and

d is an integer that models the delay of the signal through the gap. The filters G(z) and H(z) are
stable since ¢ = Rl_)R(Z_ < 1. The integer d can be computed from the width of the gap, the velocity
of sound in the gap, and the sample rate of the sampled signal, which is given by

length

d —

— % sample rate. o)
velocity P (9)

‘ 4. Padé Approximation for Inversion I

The developed numerical inversion algorithm for constructing Padé approximation of the function
G(z) is given as.

a(z)  ag+arz+ a0z® + - -+ apz?
Glz) ~ G = —Ft= by =1 < 10
where a; (I = 0,1,...,p) and b; (j = 0,1,...q) are real coefficients of two polynomials a(z) and
b(z) of orders p and ¢, respectively. The approximation G, ,i(z) of the IR filter G(z) implies that

the input wavelet {w;}7°, and the output signal {sj,}7° , must satisfy the recursion formula

D q
Sk:Zalwk—l_ijSk—ja k:O,l,Q,.... (11)
=0 g=1

A finite number N > p + g + 1 must be chosen in order to reconstruct the full Padé coefficients
a;'s and b;'s given the data {w;}7°, and {sg}7° . Therefore, the system (11) for the unknown
coefficients a;'s and b;'s becomes:

apwy, + aWi—1 + ... + apWr—p — 0181 — baSp_9 — ... — bgSp—_q = S, (12)

for k =0,1,2,..., N and p < ¢ < N. Some coefficients a;'s and b;'s in the middle terms of a(z)
and b(z) can be assumed to be zero. For a fixed integer number m (e.g., m = 6), we suppose that

Um = Ayl = o = Ay (—2) = Op (1) = U,
b1 =bmio = ... = bq—(m—2) — bq—(m—l) = 0.
Therefore, the system (12) can be rewritten as
L C1| . _ _ T
Ac:=[Aq A [02] = 3, where s = (sg, $1, 59, ..., SN (13)
C]_ — (Cbo,al,,a(m_l),ap_m,,CLP)T, C2 — (bljb27...jbmj bq_mjjbq)—rj (14)

and the matrices A1 and Ao with entries in terms of data {wz}f\io and {sk}jkvzo, respectively. The
reconstruction problem (13) is ill-posed and requires regularization to develop a stable numerical al-
gorithm. To construct a real solution vector ¢ of the reduced Padé coefficients for the inverse problem
(13), we introduce a penalization term in the Tikhonov regularization functional 72(c, s), so that the
problem (13) can be formulated as the following constrained least squares minimization problem with
the regularization parameter A > 0 chosen properly

minT(c,s) = min{ || Ac —s||* + X°||c[|*}
subject to |ug, — 1| < dp, |v; —11| <o, k=1,2,...,p,=1,2,...,¢q (15)
The parameters 1y, and v; in the constraints (15) are zeros and poles of the reconstructed [p, ¢|-Padé
approximation G7|,, 1(z) of G(z), rp = (—a/B)/%4 and | = (—1/n)1/2%. The minimizer (solution)
of the problem (15) is given by
c={ATA + Ay, 0} H{ATs} (16)

where 14,19 denotes the (4m + 2) x (4m + 2) identity matrix. After reconstruction of the real
coefficient vector ¢, we can extend it to a full coefficients of the function G[p’q](z) by inserting zero
coefficients, this gives [p, ¢|-Padé approximation of G/(z). The reconstructed function G[p’q](z) can be
used to estimate the reflectivity parameters and to identify the impulse wavelet using inverse filtering.

‘ 5. Results I

To simulate the synthetic data - impulse response signal {s;}7°, a Ricker wavelet with the dominant
frequency 25Hz was generated for the input signal, and the parameters a, b and ¢ were chosen as
b = zf—%, b = %, & = 1%, d = 50 leading to the polynomial coefficients ag, @190, b1og represented
by o = 0.7, § = —0.08, n = —0.9, respectively. The sample rate of the Ricker wavelet is 0.003
seconds, the wavelet length is 3.0 seconds, so that the total number of data is ;N = 1001. The
left Fig. 3 shows the reconstruction of the 26 reduced Padé coefficients for m = 6 compared with
the true coefficients of G(z) for the order of p = ¢ = 104 chosen in the inversion algorithm. The
valid recovered poles of G, (z) using the constraints in (15) are illustrated in the right Fig. 3.
Here 61 = d9 = 0.06, all poles and zeros of G(z) lie on the unit circle with radius r; = 1.0011 and
ro = 1.022 in the complex z-plane, respectively. The true and computed output signals {sj};’io
(the IIR filtered Ricker wavelet) using the recovered [p, ¢|-Padé coefficients fit fairly well for data
with 8% noise (left Fig. 4). The recovered function Gy, (z) as an inverse filter was used to re-
construct the original input Ricker wavelet (right Fig. 4). The reconstruction of the input Ricker
wavelet is almost identical, with no difference between the theoretical and reconstructed functions
when there is no noise in the data. Even for input data with adding 8% noise, the original input
Ricker wavelet in the time interval |0, 1.5] seconds was recovered very well using the reconstructed
function G, (2) as an inverse filter. However, there are some oscillation events that occurred
with amplitudes changing rapidly after ¢ = 0.15 seconds, which need to be further studied.
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Figure 3: Recovery of Padé coefficients for data with no noise (left) and calculation of poles for
function G(z) (right).
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Figure 4: Reconstruction of the IIR filtered Ricker wavelet (left) and the Ricker wavelet with a 25

Hz dominant frequency (right).

‘ 6. Conclusions I

We developed a new numerical inversion method for reconstruction of the Z-transform function of a
time-dependent minimum phase signal using Padé approximation. The approach is based on rational
([p, q-Padé) approximation of the Z-transform function in the complex plane. The problem is formu-
lated as a constrained least squares minimization problem with regularization constraints provided by
the minimum phase signal (all poles and zeros of Z-transform function lie outside the unit circle). The
method was tested using a Ricker wavelet to generate a minimum phase signal (IR filtered wavelet)
as synthetic input data. The performed numerical experiments for reconstruction of the Z-transform
function and its use as an inverse filter show the effectiveness of the presented approach.



