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Introduction

We have shown elsewhere that simple seismic wave phenomena may
be modeled with sets of notional particles which drift freely and collide.
To extend this modeling idea to incorporate attenuation, we merely
replace each single particle with a large number of particles, each
moving with a velocity drawn from a suitable distribution. Numerical
examples demonstrate the qualitative correctness of this model;
qguantitatively it is supported by arguments due to Bickel (1993), who
points out that the constant Q impulse response is equivalent to one of
the (one-sided) probability density functions from which we have drawn
particle velocities.

Review and approach

In last year's CREWES report we discussed the possibility of describing
simple seismic wave experiments (such as zero-offset and walk-away
VSP surveys) in terms of colliding particles, as opposed to classically
propagating waves (Innanen, 2010). Each propagating waveform, or
event, was identified as a particle with a mass and a momentum, and
these properties were used to discuss scalar reflection, transmission,
and propagation phenomena in layered media.

Here we describe how to extend the particle/collision view of a seismic
experiment to incorporate another common seismic phenomenon:
wave attenuation and dispersion.

The approach is to consider a waveform to be not one particle, but a
large number of them, and to assign to each particle a probability of
propagating with a given velocity. The waveform at a certain location
and time will then be proportional to the number of particles which have
reached that location in that time, given these probabilities.

Tracking these particles as locations and times change, we find that the
totality of the particles and their distributions closely resembles
attenuative and dispersive wave propagation in 1D.

Interestingly, the same probability density functions which supply
causal/physical type attenuating pulse shapes in our particle model
have already been associated with attenuation models. A constant-Q
Impulse response is identical to a Pareto-Levy probability distribution
(Bickel, 1993). We sense, therefore, that a particle-based attenuation
model may be establishing a useful link between a tangible (though
notional) physical idea—particles that move with a range of
velocities—and some of the formal mathematics of seismic attenuation.

Formulation

We consider a pulse propagating in 1D, i.e., in the direction of
iIncreasing distance z as time f increases. To begin, let the pulse be
arranged such that it passes z = 0 at time t = 0, propagating in the
direction of positive z. The standard wave interpretation of this pulse is
that it represents a propagating disturbance in an otherwise quiet
displacement, acceleration, or pressure field.

Let us instead interpret such a “spike” shaped function as a close
clustering of a large number, say N, of particles of unit mass, all drifting
freely to the right. The waveform could be considered an actual image
of this cluster, or simply a plot of the relative number of particles found
at all times with z fixed at z = 0.
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Formulation continued

Now, If all N particles drift with the same speed, at greater depths the
plots would illustrate the same “spike” shape shifted to the right by
greater amounts. However, our intent is to assign different velocities to
the particles. Some of the particles would then arrive at a given depth z
earlier than others, and the spike shape would spread out as z
iIncreased.

Let cr be the fastest speed any particle can take on. Then any one of
the N particles might take on the speed

c=cr—Ac, Ac>0. (1)

Let the number of particles of the full N which deviate from cr by Ac be
Nac = N X p(AC), (2)

where p is a suitable probability density function.

Particles will arrive at locations z at many different times. At t = t;, how
many particles arrive at z = z4? If a particle departs from z = 0 and
t = 0 and arrives at z¢ at {4, it must have moved at speed

Z4
C —_—
t1’
which, by equation (1), means it must have deviated from cr by an
amount Ac where

(4)

S0, the number of particles observed passing z4 at {4 is, by equation (2),

nACpr< ; (5)

Equation (5) then is a prescription for plotting a distribution of particles
iIn mid-drift, at a fixed time over all space z, or at a fixed z over all time.
The distribution mimics attenuative wave propagation, inasmuch as it is
a translation of a realization of the chosen probability density function,
which, per Bickel (1993), if chosen properly is the impulse response of
a constant Q medium.

Causality and particle velocities

In equation (1) the condition Ac > 0 leads to a kind of causality. Since
Cr is the fastest any particle can travel, it will define the arrival time of
the wave, and the further condition then ensures that no particle will
arrive earlier than that.

When we choose a distribution for Ac to follow, p(Ac), we must choose
it to conform to the condition Ac > 0. That is, the probabillity that any
particle arrives before the true arrival time associated with cr must be
zero to ensure a causal pulse.

Symmetric distributions, like the Gaussian, are therefore not allowable.
The best distributions for our purposes are those which track numbers
of occurences (and so are defined over positive valued outcomes),
such as Poisson and Gamma distributions, and of course the
Pareto-Levy distribution mentioned above. The choice of pdf and its
parameters is akin to choosing the particular Q@ model.
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Examples

A Poisson distribution for particle velocities requires a pdf

e
where ) is a parameter (Abramowitz, 1972). We may then choose
values for A and cgr, and a range of Ac values, and plot the resulting
pdf; we do this in Figure 1a. We next apply equation (5). The arriving

particles are plotted at three increasing depths in Figure 1b.

x >0, (6)
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Figure: 1. (@) Normalized velocity distribution Np(Ac): Poisson distribution, with
A= 1.0 x 1079 and Ac, the deviation from ¢z = 1500m/s, ranging from 0-300m/s. (b)
Resulting traces at depth z values of 200m (black), 500m (red) and 800m (blue).

A Pareto-Levy distribution for particle velocities requires a pdf

o1 = (1) [ aserpt "

where p(w) = eXV“)" Here K and « are parameters (Bickel, 1993). See
Figure 2.
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Figure: 2. (a) Normalized velocity distribution Np(Ac): Pareto-Levy distribution. (b)
Resulting traces at depth z values of 200m (black), 500m (red) and 800m (blue).
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