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Introduction

Projection onto convex sets, or POCS, algorithms, are simple and
robust methods for completion of data sets. They have been widely
used in seismic data processing for interpolation of missing traces (e.g.,
Abma and Kabir, 2006; Galloway and Sacchi, 2007), and their promise
has led to attempts to extend their application to problems such as
time-lapse data differencing (Naghizadeh and Innanen, 2011).

Missing bandwidth in seismic data, particularly in the low end, is a
critical obstacle for seismic inversion. Measurement of these low
frequencies is of course ideal, and research towards providing—via
sources and sensors in combination—the lowest possible spectral
cutoff has been a large thrust of CREWES research this year (Margrave
et al., 2011). Still, in the absence of measurement down to 0 Hz,
spectral extrapolation methods (e.g., Ulrych and Walker, 1984) may be
extremely useful, if only to “finish the job” begun by an appropriate
experiment. Together with well logs, it may provide a bridge for practical
seismic inversion (Lloyd and Margrave, 2011).

In this paper we examine the potential POCS-type algorithms have for
extrapolation of low frequencies in seismic data. The approach relies
on a particular view of seismic signhals. WWe assume a trace is sparse in
the time domain, meaning that the signal, in its pure state, has a small
number of large coefficients. Something like a true reflectivity. When
low frequencies are missing, the effect on the time domain is that a
larger number of nonzero coefficients appear, in the form of sidelobes
etc., but with amplitudes significantly smaller than the ones at and
around the spike maxima.

Algorithm

With these conditions in place, the POCS algorithm can be carried out
in a simple iterative fashion. We begin with a measured trace xo(t),
which is deficient in frequencies below fy. A threshold T operator is
formed, which generates yp(t) = Toxo(t), a trace which is equal to xo(t)
for all values above the threshold, and zero everywhere else. This trace
yo(t) is subject to a Fourier transform, and so is the original data trace,
creating Xp(f) and Yp(f) respectively.

A new spectrum is now generated, equal to Xp(f) within the signal
band, and equal to Yy(f) elsewhere:

X1(f) = © Yo(f) +[1 — ©]Xo(f), (1)

where © = H(f — fy) — H(f + fy) and H is the Heaviside or step function.
This spectrum is inverse Fourier transformed to the time domain,
forming x4(t). The process is then begun again, with a new threshold
T1 being chosen, and thus a y(t) formed, etc.

The main input to the algorithm is the sequence of thresholds. If, for
instance, two iterations are to be carried out, as an input a vector

v = [vg, v1]T must be provided in order to construct the operators Ty
and T4 etc.

In total then, using the symbol FT to denote the Fourier transform
operator, the updated trace x,.1(t) is given in terms of x,(t) by

Xni1(t) = FT T {OFT[Topxa(t)] + (1 — ©)FT [xa(1)]} - (2)
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Example |: simple test case

We begin with the simplest of our synthetic examples. In Figure 1 we
illustrate the input, with the lowest 10 Hz of the spectrum missing. We
next iterate POCS. In Figure 2 each row represents an iteration, with
the top row being the input. Most importantly, on the right panel is the
integral of the bandlimited trace (red) overlain on the exact integral
(black). The difference between red and black in this top right panel is a
clear illustration of the need for low frequencies.
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Figure: 1. (a) Reflectivity at full bandwidth. (b) Spectrum of reflectivity. (¢) Spectrum
w/o lowest 10 Hz. (d) Bandlimited trace.
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Figure: 2. lterations of POCS. Top row: left; input trace (black) vs. idealized (dashed);
middle; input trace (red) vs. idealized trace (black); right; integrated traces, input (red)
vs. idealized (black). Middle row, first it. of POCS; bottom row, second it. of POCS.

Example ll: more events and noise

Here we add more events and %1 uncorrelated noise. Figures 3-4
demonstrate the method’s basic insensitivity to data inaccuracy.
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Figure: 3. Input data with %1 noise drawn from a Gaussian distribution.
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Example ll: more events and noise (continued)
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Figure: 4. lterations of POCS with %1 noise drawn from a Gaussian distribution. Top
row: left; input trace (black) vs. idealized (dashed); middle; input trace (red) vs.
Idealized trace (black); right; integrated traces, input (red) vs. idealized (black). Middle
row, first iteration of POCS; bottom row, second iteration of POCS.

Conclusions

POCS based algorithms have a record of completing seismic data in a
robust manner, mostly for multidimensional interpolation. It is natural to
ask whether such an algorithm might complete the low end of the
frequency spectrum, under the assumption that data events are “spike
like".

Synthetic testing appears to confirm the basic applicability of the idea.
Mild stressing of the problem by (1) limiting the number of input data
points, (2) increasing the number of events, and (3) adding uncorrelated
noise with amplitudes of up to %5 of the signal maxima, does not
appear to obstruct its use.

Clearly, systematic testing on field data with comparison to well control
IS the next step. If successful, POCS spectral extrapolation could be
seen as a useful preprocessing step prior to various types of seismic
Inversion.
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