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Introduction

In seismic signal analysis, regions of abrupt change
classifiable as “edges”, contain considerable
amount of a signal’s information, thus making
edge detection a potentially appropriate and
efficient tool for obtaining information from
seismic data (Innanen, 2003). Edge detection
requires analysis of local properties of

corresponding edges.

The Wavelet transform characterises the local
regularity of a signal by decomposing signals into
fundamental building blocks localised in space and
frequency. Applying advanced mathematical
techniques namely continuous wavelet transform
enables us to obtain the modulus maxima from
seismic data and estimate the Lipschitz exponents
which in turn allows us to measure the local
regularity of functions and differentiate the
intensity profile of different edges (Mallat and
Zhong, 1992; Mallat and Hwang, 1992).

A robust estimation of Lipschitz exponents from
seismic data, alongside prior geological
information, could potentially lead to processing
and inversion algorithms able to discern and
characterise such targets.

Theoretical Background

. Wavelet transform

Although a powerful tool for analysing periodic
functions, the Fourier transform fails to provide
time-frequency localisation (Daubeschies, 1992;
Kaiser, 1994; Qian, 2002). One possible solution is
to cut f into blocks and subsequently perform the
Fourier transform on a block by block basis which
will provide information in regards to the signal’s
frequency content during the time frame covered
by the corresponding window (Qian, 2002). This
method referred to as short-time Fourier
transform can be described by the following
mathematical relation (Daubeschies, 1992),

(" @, = [ f(s)gls—De ds (1

where f(s) is an arbitrary signal and g(s) is the
windowed function designed to localise signals in
time. An underlying problem with this method
relates to the flexibility or the fixed size of the
window.
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The wavelet transform provides a solution to some
of the shortcomings associated with the Fourier
and the short-time Fourier transform by utilising a
scalable modulated window and providing a time-
scale representation of the signal by calculating
the spectrum at every position and shifting the
scalable window along the signal. Mathematically
the wavelet transform for a given function f(t) at
some scale s is given by
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where Y(t) is the “mother wavelet” dilated and

time-shifted.
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FIG. 1. The wavelet (right side) varies the width
while keeping the number of oscillations constant.
The short-time Fourier transform (left side) has a
fixed window size independent of oscillations.

ll. Lipschitz regularity

The local regularity of a function f is often
measured by the corresponding Lipschitz exponent
(Mallat and Zhong, 1992; Hong et al., 2002). Based
on wavelet transform, a function f(x) is said to be
uniformly Lipschitz a over [a,b] if and only if there
exists a constant A > 0 such that the wavelet
transform satisfies the following (Mallat and
Zhong, 1992; Innanen, 2003),

W, f(x)
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where ‘st(x)‘ is the modulus maxima of the
function f(x) at various scales s=2- Based on the
following properties a distinction could be made
oetween singular and differentiable functions

(Mallat and Zhong, 1992):

e If f(x)is Lipschitz a, then its integral g(x) has an
associated Lipschitz exponent equal to a + 1.

e A function f (x) is singular if the associated
Lipschitz exponent, a, is less than 1.

< The Lipschitz exponent a, associated with a
continuously differentiable function f (x) is equal
to or greater than 1.

® The Lipschitz regularity of a delta function is
equal to 1, since its associated modulus maxima
decreases with scale.

lll. Estimating the Lipschitz
Exponent

To estimate a, one could find linearise equation (3)
and obtain the slope

log, ‘st(x)‘ <log, A+alog,(s) (4

Additionally one could estimate a and A by
forming the following objective function

p(A,)= ) (log,(a,)— (log, A+ otlog, (s)))’

i,j=1
(5)
and minimise to get
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However, the use of the linear model given in (5)
would be limited to single events. In seismic signal
analysis due to absorption and loss of energy with
progression of time, a single event resembling a
delta function would gradually obtain spectral
characteristics of a Gaussian with increasing
variance. Such a function could be modelled as a
delta function smoothed by a Gaussian with
variance o?. Thus, the new model is non-linear and
requires the minimisation of the following

objective function,
o—1
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’ FIG. 2. Three
parameters
a, A and o,

y . measuring a
pulse’ decay,
amplitude

\ and width
J o respectively.
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Conclusion

The continuous wavelet transform and the
associated Lipschitz regularity provide a potentially
efficient and powerful tool for analysing
singularities in a signal. For a single event, a linear
model enables us to estimate the Lipschitz
exponent and characterise the singularity with
relative ease.

However, for practical applications, a seismic event
would have to be modelled as delta function
smoothed by a Gaussian, thus leading to a non-
linear model. In order to estimate the Lipschitz
exponent, one would have to form the objective
function and minimise, using a relatively time
consuming and computationally expensive method
such as the steepest descent or conjugate
gradient.

Our primary concern is to analyse closely spaced
events, develop a model of attenuation and
dispersion in order to estimate Q values.
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