SH wave modelling by a staggered-grid method

Zaiming Jiang*, John C. Bancroft, and Laurence R. Lines jianz@ucalgary.ca

SH modelling method

A staggered grid for SH modelling

- The surface boundary condition is $\sigma_{23} = 0$.
- A method of combining absorbing boundary conditions (Clayton, 1977) and the nonreflecting boundary condition (Cerjan: 1985) is applied to the sides and bottom of subsurface models

Boundary conditions

Nith a buried seismic source in a homogenous meida, implementation of the free surface and computational boundaries at the bottom and the sides are proved to be working correctly.

Surface seismic source

- Wave propagation velocity is measured to be correct.
- the amplitude scales as $\frac{1}{\sqrt{distance}}$. This is different from the spherical wave, which scales as $\frac{1}{distance}$.
- There is no surface wave generated in the homogeneous medium.

Seismic resolution

A thin layer model

Source frequencies

Surface records

Guided SH waves

A surface layer subsurface model

Snapshots in time order show guided SH waves

