Full waveform inversion and the inverse Hessian

Introduction

Full waveform inversion involves defining an objective function, and
then moving in steps from some starting point to the minimum of that
objective function. Gradient based steps have long been shown to
involve seismic migrations, particularly, migrations which make us of a
correlation-based imaging condition. More sophisticated steps, like
Gauss-Newton and quasi-Newton, alter the step by involving the
iInverse Hessian or approximations thereof. Our interest is in the
geophysical, and practical, influence of the Hessian. We derive a wave
physics interpretation of the Hessian, use it to flesh out a published
statement of Virieux, namely that performing a quasi-Newton step
amounts to applying a gain correction for amplitude losses in wave
propagation, and finally show that in doing so the quasi-Newton step is
equivalent to migration with a deconvolution imaging condition rather
than a correlation imaging condition.

Summary of results

Full waveform inversion (Lailly, 1983; Tarantola, 1984, Virieux and
Operto, 2009) is solved when an objective function is minimized. This
happens by taking

(i) Gauss-Newton (or just Newton) steps,
(i) Quasi-Newton steps, or
(i) Gradient-based steps

towards the minimum. Gradient based steps are the most common, but
researchers have begun to consider quasi-Newton steps. Our purpose
IS to interpret such steps. In particular:

1. We illustrate the role of the gradient and inverse Hessian in
taking a single Gauss-Newton step towards the solution;

2. We re-derive using a scattering formulation the
migration/correlation interpretation of gradient based stepping;

3. We extend this wave-based interpretation to include the
Hessian;

4. We flesh out the statement of Virieux (2009), that using the
inverse approximate Hessian applies a gain correction;

5. We identify (4.) as equivalent to use of a deconvolution imaging
condition in the migration interpretation.

Gradient and Hessian: continuous forms

In the corresponding CREWES report, we derive the gradient and
Hessian functions assuming an objective function of the form
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where 0P are the data residuals, finding, respectively
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Gain correction in a Quasi-Newton step

We may also discuss the Hessian in seismic migration terms, using
matrix-vector rather than functional notation. The interpretation of the
Newton result for the parameter update vector Ap yields a further
interpretation of a gain correction consistent with the deconvolution
imaging condition. The update is:

Ap = —Re [(J'WyJ)

Wn] ' Re [JdeAd*} | (1)

J Is the Jacobian matrix, Wy is a data-weighting matrix, Wy, is a
regularization matrix and Ad is the data residual. Since the Jacobian
has dimensions of data / parameters, the inverse Hessian provides the
necessary gain so that the gradient is multiplied by the proper units.
Denoting the units operator by [-], we have

data 2 y data
parameters parameters

x data = parameters . (2)

[Ap] = (

What is still left explicitly relates J to the wavefields and scattering
effects. We can examine the gradient term and the approximate
stabilized inverse Hessian by first noting that
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In equation (3), B is the forward modelling operator, B~ is the Green’s
operator, and the derivative of B with respect to a particular member of
P, pi, represents the scattering effect of a spatial Dirac impulse at the
appropriate point. We now look at the gradient, the "numerator” in
equation (1). Substituting equation (3) into Re(J’WyAd*), and for
simplicity, setting Wy = |, we obtain
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Expansion of the transpose in equation (4), results in the final
expression for the gradient as (real part implied):

OB’

gradient =u’ x — x .5‘1TAd*,

(9p back-propagated, time
reversed residual

The gradient in (5), which corresponds to g in the previous section,
represents reverse time migration: a cross-correlation of the modeled
field with the backpropagated data. However, there is no gain
correction. The inverse approximate Hessian is incorporated by
substituting (3) into (1) with W, = . The real parts become

f
(J'Wyd) + W, = <B1% X u) <B1% X u) +Wp.  (6)

KEY TERM
Expanding the real part of the KEY TERM, and setting ¢ — 0, we have

scatterer weighting
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The KEY TERM is the autocorrelation of the modeled wavefield u,
gain-corrected for geometrical spreading with a scatterer weighting
operator. Hence we recover a slight modification of the deconvolution
imaging condition.
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Quasi-Newton and deconvolution imaging conditions

It iIs now possible to show directly how quasi-Newton amounts to
migration with a deconvolution imaging condition. We begin with
equation (1). We substitute (5) and (7) into (1), obtaining

gradient Re [UT X ujz X (B_1)T X Ad*}

AP = —
KEY TERM Re [UT < wh (5_1)T (B—1) x u}

(8)

The term (B—1)T (B~1) represents geometrical spreading, which for a

homogeneous medium is r2; the term (B~1)" x Ad* is the
backpropagated time-reversed (BPTR) data residual. With these
simplifications in mind, we have

gradient  r?2 Re (u’ x BPTR)

~ KEYTERM &2  Re(uiu)
|,

~ deconvolution
Imaging condition

Ap (9)

This in the time-domain is the gain-corrected zero lag cross-correlation
between the downward propagated field and the time-reversed data,
divided by the autocorrelation of the downward propagated field. This is
equivalent to deconvolving the back-propagated data by the downward
propagated data at the image point.

Discussion

The simplest form of full waveform inversion, gradient-based stepping,
uses a correlation imaging condition that lacks gain correction. The
approximate Hessian, used in the quasi-Newton approach, is as a gain
correction and has a direct interpretation as applying a deconvolution
imaging condition. In industry practice, the deconvolution imaging
condition is a direct estimate of a reflection coefficient. Since we are
seeking an update to an impedance model, one converts the R into an
Impedance update. In Margrave et al. (2010), this was done by
matching to well control; however, we could also use the approximation

Al Al
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In which the impedance model at iteration k — 1 scales the reflection
coefficient at iteration k, to updating the impedance for iteration k. Ry
might come from a deconvolution imaging condition, or from a
correlation imaging condition if the data are gained before migration.
The estimate of A/, is presumably what is obtained from a
guasi-Newton implementation of full waveform inversion.

. Al = 21, 1Ry (10)
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