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Strong form

» The i component of the strong (differential) form of the full
elastic wave equation, in an isotropic medium Q € RY, is

pilli = djojj +f;, x € Q, t > 0.

u=(uq,...,Uy) is the displacement vector
X = (X1, ...,Xd) c RY

p Is the density

dot denotes time differentiation

oj are the stresses

E)j = a/an

f. is the i component of the applied force
sum over repeated indices

Ojj = )\(V - U)5,'j & 2/,L€,'j

eij = (0 + i)

A and . are the Lame parameters

Weak form

Multiply both sides of equation (1) by an arbitrary function v(x)
and integrate by parts to obtain the weak (integral) form,

/pU;VdQ+/01jadeQ /f}VdQ—F% oV - ndS (2)
Q Q Q 2,9,

Pseudospectral methods choose a set of points {xop, ..., Xy} in Q
and a set of functions {¢o, ..., on} in L%(Q) with the property

@m(xn) = Omn

Write the displacements as linear combinations of the basis
vectors

» Equation (2) is enforced for v = ¢p(x), forallm =20, ... N

Boundary conditions in 2D

» Split the surface integral overthe o« = N, S, E and W boundaries

ojj - NVdS = f ojj - nvdS

The free surface condition o;; - n = 0 implies

f ajjV - ndS = 0.
N

Second order absorbing boundary conditions along a vertical
boundary at x = x;ax can be enforced by substituting into the
stresses

1. Vp-Vs 1. Vp-Vs
O1u = VpU Vo oW, O1W = VSW Vs

Similarly, at z = z,2x the substitution is
1. Vp—-Vs
02Ul = Vs Vs

At x = 0 the signs are switched.

82U.

Vp — Vs

MW, ou.

Time-integration

» Substituting the boundary conditions into equation (2) produces
a system of ordinary differential equations

MU(t) + AU(t) + KU(t) = F(t).

which can be time-stepped numerically.
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Domain decomposition

» In domain decomposition the model parameters are split up into
smaller constant regions. This can be done by averaging the
parameters at the 4 corners, or fitting a polynomial to the original
model and evaluating at the cell centers.
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Figure: A two element decomposition sharing an interior boundary.

» At the interface between elements we enforce the conditions
. Continuity of displacement: ”"‘91 — u,-\Qz
- Continuity of traction: ;- n|, = 0j - n|,_

» The first is done by making the functions ¢, (x) piecewise
continuous at the interfaces.

Figure: 2D spectral element basis functions defined on 4 elements.

» The second we get for free by deleting all interior surface

integrals.
) f oji - n|, vdS = 0.
k ls ‘

» The resulting system is very sparse.
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Figure: Sparsity patterns of M,A and K for 9 5-node elements.

» More complicated models can be built by using many smaller
elements, akin to building an image from pixels.
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Figure: 2 simple meshes obtained by interpolating P wave velocities.
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Example.

» Consider a simple two-layer medium with a free-surface and
absorbing sides and bottom. The source is a Ricker wavelet
applied at a single node.
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Figure: 2-norm of the displacement vector at various times.
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