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Introduction

Amplitude modeling is an important aspect of analyzing seismic
data. These amplitudes have been studied extensively for elastic
layer models in the geophysical community. Recently published work
by Russell, Gray, and Hampson extends these elastic models to
include poroelasticity where a quantifiable fluid term is described in
the target layer. This fluid term is explicitly shown in a linearized AVO
approximation. Where this approximation is derived from the Aki
and Richards approximation, we have derived a linear poroelastic
AVO approximation that is arguably the same as Russell and Gray’s
approximation. With our method, we also extend our amplitude
modeling methods into the non-linear domain where higher order
correcting terms shows improvement relative to the linear
approximation. These expressions are detailed in this year’s CREWES
Report titled “Characterization of poroelastic targets for P- and §-
waves using linear and non-linear AVO methods”.

Forward amplitude modeling

Figures 1 and 2 demonstrate visual comparisons of the Zoeppritz
equations and the 1%, 2", and 3 order poroelastic approximations.
The left column models amplitudes based on the perturbation series
while the right column uses the reflectivity series. Figure 1 uses
small values for perturbation modeling and figure 2 uses an
incrementally higher value to emphasize a decrease in amplitudes of
the linear approximations relative to the non-linear forms.
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Fig 1: Linear and non-linear poroelastic amplitude approximations are shown
with respect to the Zoeppritz equations. First order is shown in black, 2"
order in magenta, 3" order in red, and Zoeppritz in blue. Table 1 indicates
what model parameter values are used.

i\

“CREWES

b)

0.4 0.2 . | |
£0.3 £ 0.15 Jﬁiiii//
o o
3 0.2 S 0.1
z 2
£ 0.1 £ 0.05
<L <L

0 | 0

20 40 60 0 20 40 60
(degrees)

o

. 0, c(deg rees)

0.4

E 0.3} E
e o
3 0.2 3
3 3
£ 0.1 S
< <

0 ' : : 0 I ! [

0 20 40 60 0 20 40 60

Binc(degrees) Oinc(degrees)
e) f)
0.4 . l . .

T 0.3 £
i S
S 0.2 3
- -
=
E 0.1 £

0 ' ' [ 0 ' ' [

0 20 40 60 0 20 40 60

0, .(degrees) 0. c(deg rees)

Fig 2: This figure shows larger differences in amplitudes of the
approximations relative to Zoeppritz.

Inverse amplitude modeling

These inversion results are predicted using the linear approximation
which solve for the fluid perturbation (a,). The following figures are
normalized residuals of known perturbation models and their
estimations. Figure 3 demonstrates constant increases in magnitude
of all 3 perturbation models while figures 4 and 5 show

independently varying models in fluid and shear modulus
respectively.
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Fig 3: Plots of residual normalized linear inversions using perturbation
models (a; a, ap). All three perturbation models are equal for each subfigure
and demonstrate increasingly unstable results for large 6, and small 6, and
vice versa.
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Fig 4: This figure shows linear inversion plots as figure 3 but instead uses
constant a, and a, while a; steadily increases in equal increments. The fluid

perturbation value in d) is 0.4.
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Fig 5: An estimation of the fluid perturbation parameter using an incremental
increase in a, while agand a, remain constant.

Conclusion

In the forward modeling results, more accuracy is achieved for
higher order approximations. Inverse modeling results show zones of
reflection data that are undesired for various perturbation model
examples.
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