Reflection coefficients through a linear velocity ramp
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Overview

A seismic wave propagating from one region of constant velocity to
another, through a smooth transition zone, will differentially reflect or
transmit across the zone, depending on the relative sizes of the
transition zone and the wavelength of the propagating wave. This work
presents an exact analytic solution for the case of a linear ramp velocity
in the transition zone,
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Linear ramp velocity field, from c =1 to ¢ = 2.

We demonstrates that for long wavelengths, the ramp looks essentially
like a jump discontinuity in the medium, with the corresponding
reflection and transmission coefficients. For short wavelengths, the
ramp provides essentially 100% transmission and no reflection. Energy
conservation is verified for all wavelengths.

Variable density, elasticity

Careful consideration is given to the two cases of varying the velocity
parameter, one via variations in the density of the propagation medium,
the other in varying the modulus of elasticity.

In the transition zone, the analytic solution to the wave equation is in the
form

u(x, t) = xE1/2E/1/4—w? it

where the +1/2 is in the varying density case, —1/2 is in the varying
elasticity case. A plot of the two cases:
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Wavefield in the transition zone. Variable density, elasticity.

In both cases the wavelength expands in the transition from left to right,
consistent with the increasing velocity of propagation, but the amplitude
response is different.
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Wave Equation

The one dimensional “elastic’ wave equation for a displacement field
u(x,t), of a disturbance travelling along a weighted string under
tension, with density p and modulus of elasticity (bulk modulus) K is
given in the standard form

0’u 0O ou
/O(X)W = O (K(X)E)—x) -

In the elastic equation, the modulus of elasticity appears inside the
derivative, while the density is outside. For non-constant p, K, the
position of these coefficients within the derivative has important
physical consequences — in particular on the sign of reflection.

Analytic Solution

To compute reflection and transmission coefficients across the ramp,
set an incoming wave on the left of the form €“*=0, and hypothesize a
reflected wave of the form Re“(=*=1 and transmitted wave on the right
of the form Te'“(*/2=0_ |n the transition region, set the wave to a linear

combination of the solutions x*!/2£V1/4-*g=ivt This gives three
regional solutions,

Uoft = eiw(X—l‘) 4 Reiw(—x—l‘)7

Uprans = Axm e—lwl‘ 4 BXI’IZe—If,ul‘7

Uright = Tei(,u(x/Q—l‘)7

with n1,n2 =1/2 £ /1/4 — w2 in the varying density case,

and n1,m2 = —1/2 + 1/1/4 — w2 in the varying elasticity case.

Setting physical continuity conditions across the interfaces leads to a

system of equations for coefficients R, T, A, B

T 1 —e 0
2n1 2n2 0 _eiw
n1 n2  jwe ™ 0

ol .2M-1 p2.2m=1 0 —0.5iwev

Reflection coefficients

With Cramer’s rule, and Mathematica™, an exact solution for the
reflection coefficient is obtained

B e (2™ — 2" (n1 + n2)
2M2(2jw + 24/1/4 — w2) + 2M(—2iw + 2,/1/4 — w?2)

In the varying density case, n1 + n2 = 1, and setting a = /1/4 — w2,
yields

R(w)

ein(za . 2—3)
2-3(2jw + 2a) + 23(-2iw + 2a)
Note that R(0) = 1/3, so there is a positive reflection in this varying
density case, at low frequencies.

In the varying modulus case, n1 + n2 = —1, yielding exactly the
negative of this previous solution,

R(w)

eziw(za - 2—a)
2-3(2iw + 2a) + 23(—2iw + 2a)
Here, R(0) = —1/3, so there is a negative reflection in this varying
modulus case, at low frequencies.

A similar procedure will give the analytic solution for the transmission
coefficients.

R(w)
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Reflection, transmission

We plot of the reflection and transmission coefticients R, T as a function
of frequency, as well as a check on the conservation of energy, with

2 K 2
A2+ T(w)P = 1.
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The varying density (left) and elasticity (right) cases give different
results, reflecting the physical differences in the setting. For low
frequencies, the reflection is equivalent to a physical jump in velocity —
that is, for long wavelength, the ramp looks like an abrupt physical jump.

Impulse response

An arbitrary waveform impinging on the velocity ramp is transformed
into two resulting waveforms, the reflected waveform and the
transmitted waveform. The filter response is simply the result of
initiating a delta spike on the left of the velocity ramp, and allowing it to
travel into the ramp, creating a reflected and a transmitted waveform.
The filter response for the ramp in the frequency domain has been
computed above; the inverse Fourier transform will give the filter
response in space.

The numerical results are plotted, showing that the reflection from the
ramp produces a broadened pulse (left), while the transmission is a
delta spike (right). We can translate these results into typical physical
parameters in a seismic experiment, to determine the significance of
this frequency dependent response and broadening of the delta
response.
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Impulse response, reflection and transmission.
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