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ABSTRACT Quasi-Newton Step Numerical Analysis

For a 1D scalar medium, analytical derivations show that using the
approximate-Hessian in FWI brings the model update to within a first
order approximation of the scalar reflection coefficient for a single
interface. Compared to the approximate-Hessian, we found that the
full-Hessian provides additional scaling information at the depth of the
interface, improving the accuracy of the inversion. These ideas were
also tested using a numerical example displaying how both Hessians
move very fast toward the actual velocity model. It is also shown that
the full-Hessian leads to a very accurate inversion in the presence of
large velocity contrasts superior to the approximate-Hessian. Hence,
the full-Hessian may achieve a faster convergence and accurate
_ inversion while providing amplitude information. ¥

Full Waveform Inversion

The goal of FWI is to find the squared-slowness model, s,(r) = 1/c§,, (1)

which "most likely” generated, the recorded wavefield P(rg, I, w) by
(n)

minimizing , after » iterations, the objective function ®(s, *) defined as
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Here, 6P is the residual wavefield defined as follows
6 P(r,, rs,w|s((,n)) = P(r,,rs,w) — G(rg,rs,w|s((,n)),

where G (rg, rs,a)|s(§n)) iIs the modelled field due to the n-th squared-

slowness model iteration.

To achieve that goal the slowness model must be updated after each

iteration. The model update 655") (r'") can be computed as
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where H™~(r",r") is the inverse of the Hessian H™ (1',r), and g™ (r')
is the gradient of the objective function, defined as follows
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The Hessian can also be written as the sum of two terms

H™(r',r) = H{™ (r',r) + Hy” (', ). (3)

In terms of Greens functions G and the residual wavefield 6P, these
terms can be written as

H%n) (r',r) = — Z/dww4[G(rg,r,w)G(r, r', w)G(r',r,,w)
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+G(rg, v, w)G(', r,w)G(r,rs,w)]|0 P*(ry, rs,w)],

(4)

Hz(n)(r’,r) = Z/ dww'G(r,, v, w)G(r' rs,w)G*(ry, T, w)G*(r,r5,w)). (5)
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Approximate-Hessian

When residuals are small the 4, term in equation 3 may be neglected
leading us to an approximate version of the Hessian which only
depends on H,.

The general expression for a causal homogeneous Green's function,
in a 1D scalar medium is

G(z,zs,w) =

eiklz—z3|
12k
For a source and a receiver on the surface we get

d ko =
G(z,0,w) = G(0, z,w) =

(6)
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Substituting equation 6 and its complex conjugate in equation 5 we

get the following expression for /7, and its inverse:
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For computing the model update 6s(§n), given by equation 2 we can use

the following expression for the gradient
Rlcg';r

22
Substituting equations 9 and 10 in 2 we get
538"') (2) = —/ dz' [ l

com

9(2) = H(z — 21). (10}
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After integration, the model update given by taking a quasi-Newton
step is

PN AT
s (2) = — cgl H(z — z1). (11)
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Step Analysis

For understanding the magnitude of the model update let us write the
scalar normal-incidence reflection coefficient R in term of slownesses
and solve for the ratio s,/s, as follows
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Expanding the denominator as a Taylor’s series and keeping terms up
to the second order

51 _ (1-R)(1—R+ R? — R3) ~ (1-R)(1-R).
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Squaring the slowness ratio we get

2
L ~(1-2R)?2=1-4R+R?~1—4R.
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Solving for the slowness-squared difference AS ~ s? — 5,2 results
—4R

5

AS ~ —4s55R =
Co

(12)

Comparing equations 12 and 11 we can see that the update provided
by the approximate-Hessian is in agreement with a first order
approximation of the slowness contrast related to the reflection

coefficient R.
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For computing the residual dependent term 77, in the full-Hessian we
used the following expression for the complex conjugate of the
residuals
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Using equations 6, 7 and 13 in 4 we get
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After integration )
H(Z',z) = Rlcgﬂd(z | N, (15) Wh Z=z+2z —2z
\Z,%) = %53 + |2 — 2'), ere = 1-
Solving the absolute value term for the case when z > z’ we get
Ricam
Hy(Z,2) = 1240 0z — z1).

After substituting equations 8 and 15 in 3, we get the following
expression for the full-Hessian
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Following figures show the numerical results for quasi- and full-
Newton FW/I’s in a 1D scalar medium.
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FIG. 1. Approximate- (left) and exact-Hessian (right) matrix. Note that the full
Hessian just provide additional scaling information at the depth of the interface.
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FIG. 2. FWI results for a meidum (left) and large (right) velocity contrasts. Results
show that for a large velocity contrast the quasi-Newton FWI underestimate the
velocity value for the second medium.
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FIG. 3. Error in the estimation of c, for a wide range of velocity contrasts. Note
that the quasi-Newton FWI increasingly underestimate the velocity of the second
medium. On the other hand, the full-Newton FWI is always close to the actual c,
value
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CONCLUSIONS

« The effect of the Hessian in FWI is providing the proper scaling of
the gradient for getting to the minimum of the objective function.

« The approximate Hessian gives a very accurate inversion for low
velocity contrasts comparable to a first order approximation of the
reflection coefficient.

« The full-Hessian improves the scaling of the gradient and give
better results both for small and large velocity contrasts.

+ Using the full-Hessian points toward a better inversion when strong
AVO effects are present on the data. Studying its effect in a 2D
sense is required to confirm this statement.
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