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Then we can obtain the prediction algorithm in 1D * The shot record we used is with direct wave removed.

* For a smaller € value, artifacts will be seen at the arrival times of
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localized wavelet.

° =€ ’ * For a larger € value, it will damage the important information in the
bam(k,) = | dze"™ by (z) dz e " by (z) e ] prediction output.
—o —o A study of prediction accuracy in 1D B . ) .
. I7 70 70
dznelkzz b1 (ZH) (2) ) ) 3 : 1
Z'+E 50 50 /l/ 1.5 1.5
éalo %40 E - — E |
where k, = 2w/cy is the vertical wavenumber, which 50 - o 2
Is conjugate of the pseudo-depth, ¢, is the constant - )
reference VeIOCity’ bBIM(kZ) is the prediCtion Of the 06 1I8 3I6 5|4 7|2 9|o 15812|61a|141éz1éo1582I162é42é227|02583663§43;12Béo OW """ s 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
. . . Offset (m) Dipping Angle (° ) X (M) Xg (M) Xg (M) Xg (M)
algorlthm, the entries bl(z) are the InPUt data traces. FIG. 4. Predict : e o , FIG. 13. The output of the 1.5D prediction with first FIG. 14. The output of the 1.5D prediction with
. 4. Prediction errors plotted against an FIG. 5. Prediction errors in the zero offset trace | s diob: le of 2° first | ' dipoi e of 5°
increasing series of offsets. plotted against an increasing series of dipping ayers dipping ahgie ot = . . rst layer's dipping angle of >~
1.5D internal multiple prediction a|g0rithm angles, the generator is the dipping interface. * For the smaller dlpplng angle case, the results are more accurate as
. ’ both the zero offset travel times and moveout patterns of the
If the data have offset but the Earth is nearly layered, : /f f internal multiples are displayed correctly
o . ok . : . 200 7 * For the larger dipping angle case, when the offset becomes larger,
g—ts . (3) i - :. / o the prediction error increases.
but they are no longer necessarily equal to nil. We ] 1
can Obtain the 1-5D algorithm 0 W 1 2 3 4 5 é 7 é é 1'0 1'1 1'2 1'3 1'4 1'5 Oo i 2| :IJ) all é é 7| é EI) 1Io 1I1 1I2 1|3 1I4 1I5 1
0.0) ’ L& Dipping Angle(° ) Dipping Angle () Co n CI u S I o n S
bBIM(kg:w) — dzeikzzb1 (kg,Z) dz'e_ikzzlb1 (k ,Z') FIG. 6. Prediction errors in the zero offset trace  FIG. 7. Prediction errors in the zero offset trace d Compared to 2D method, the computation cost has been
—00 — 00 plotted against an increasing series of dipping plotted against an increasing series of dipping . .
0 angles, the second layer is the dipping interface. angles, the third layer is the dipping interface. dramatlca”y reduced in 1.5D methOd'
v dz"et*z=" b, (k,,z") (4) J According to the effects of various epsilon values, we can choose
z'+e Recommendations the epsilon value more efficiently.
where k, = 2q,. Compared to the 2D algorithm, the d We recommend applying 1D method when the offset is smaller than - Ourlllc.fD methodlls denjch)cnstrjted. t0 b.e i fgr thiatli?ls whejrche
computation cost has been dramatically reduced, 300m. >Ma Ilppng Iang €5 €XI5L and primadries are mixed together wi
; : . i , , internal multiples.
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and faster than 2D. recommend using this method when the dipping angle is within 10°. Please see the corresponding CREWES reports for a full bibliography.
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