Series analysis of anisotropic reflection coefficients for inversion

Abstract

Azimuthal AVO analysis is typically performed using linearizations of
the exact formula for anisotropic reflection coefficients. These
approximations often make simplifying assumptions about the types of
media on each side of an interface and fail at large angles, especially
when there is a large contrast in elastic parameters across the
interface. Since the larger angles of incidence are more sensitive to
azimuthal anisotropy, this failure can cause poor estimates of azimuthal
anisotropy. In order to better understand and reduce the nonlinearity
that can adversely affect inversions using linearizations, we analyze
higher-order terms of the reflection coefficients. We show that the
nonlinearity for large contrasts and long offsets is significant, indicating
the need to use exact reflection coefficients in many situations.

Rpp along individual azimuths

Shuey (1985) showed that the linearized reflection coefficient for PP
reflections at small incidence angles in isotropic media could be written
in the form

RS5(0) = A+ Bsin®0 + Ctan?0sin® 0, (1)

where A is the AVO intercept, B is the AVO gradient, and C is the AVO
curvature. Vavrycuk and Psencik (1998) calculated linearized reflection
coefficients in this form for an interface between weak, generally
anisotropic media using perturbations from background P-wave
velocities, «, and S-wave velocities, 5:
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and A,; 1s Voigt notation for the density-normalized elastic parameters.
The ' symbol denotes that the parameters are in the coordinate system
which is rotated to be aligned with the vertical plane containing the
source and recelver.
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Figure : 1. Azimuthal reflection data from physical modeling from Mahmoudian
(2013). The azimuthal anisotropy Is most noticeable at large angles where the waves
are traveling increasingly horizontally. Unfortunately, as the incidence angle

Increases, the waves become closer to critical, the reflection coefficients become
progressively nonlinear and the error in equation 2 grows larger (see Figure 3).
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Error in linearization

Figures 2 & 3 demonstrate the error in the estimated AVO intercept,
gradient, and curvature, as a function of azimuth, due to the
linearization from Vavrycuk and Psencik (1998) given in equation 2.
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Figure : 2. AVO intercept, gradient, and curvature estimations vs. linearization along
individual azimuths. (blue) AVO quantities estimated by solving for best-fitting
coefficients A, B, and C from equation 1 for physical modeling data shown in Figure 1.
(red) AVO quantities calculated using estimated elastic parameters from Mahmoudian
(2013) with the linearization from equation 2.
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Figure : 3. Comparison of anisotropic reflection coefficient linearization to exact
plane-wave coefficient for model with elastic parameters from Mahmoudian (2013).
(blue) exact plane-wave anisotropic reflection coefficients. (green) linearizations from
Vavrycuk and Psencik (1998) (eq. 2). (red) linearizations using only the first two angle
terms in eq. 1. Solid lines indicate an azimuth of 90 which is the fast direction of the
lower medium, representing the direction parallel to a fractured medium. Dotted lines
iIndicate an azimuth of O which is the slow direction of the lower medium, representing
the direction perpendicular to a fractured medium.

Parameterization

We perform the expansion by parameterizing the reflection coefficient in
terms of the horizontal slowness, p, squared (p?) and perturbations that
measure contrasts across the layers at the interface. The first step we
perform is parameterizing all the elastic parameters in terms of the
parameters of the top layer. We do this by defining 5 weak contrast
parameters:
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where aq1, a3, ass, and ass are density-normalized stiffness coefficients
and the superscripts (1) and (2) refer to the upper and lower layers.
This allows us to define the second layer parameters in terms of the top
layer parameters:
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Series expansion

Expanding the formula for exact V11 reflection coefficients from
Graebner (1992) in the weak contrast parameters from equation 4 and
p? results in
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Equation 6 is written to 2nd order in the perturbation parameters. The
comparison of equation 6 to the linearization using background medium
properties is shown in Figure 4. Average medium properties can be
formed as a series expansion in our small contrast parameters (as
shown in Innanen (2013) for isotropy):
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etc. Vp, refers to the vertical P-velocity and Vp, refers to the horizontal
P-velocity (there is only one since this formulation is for a single vertical
plane).
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Figure : 4. Comparison of series expansion from eq. 6 using upper layer parameters
to equation 2 from Vavrycuk and Psencik (1998) using background medium terms.
(left) Fast direction (of the bottom layer) of the synthetic model. (right) Slow direction
(of the bottom layer) of the synthetic model. The 3-term linearization using average
medium properties approximates the plane-wave reflection coefficient better than our
fourth order (lower order when not counting theta terms) at large angles of incidence
for large contrasts.

Conclusions

There Is a large amount of nonlinearity hidden in the
linearization’s parameterization using background media.

Our result is in agreement with isotropic AVO theory in the
precritical region for which there is also a large degree of
Increasing nonlinearity.

In practice, using exact reflection coefficients may be necessary
to model nonlinearity at large angles where azimuthal anisotropy
has its largest influence.
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