Non-linear Vibroseis models for generating harmonics

Overview

Vibroseis devices are a convenient source of seismic energy. For a
variety of reasons, they produce harmonics even when driven by a pure
sinusoid. These harmonics may be considered as noise, or as extra
correlated data that might be used in the imaging algorithms. The goal
of this project is to produce several simple mathematical models to
understand where these harmonics come from.

In real seismic experiments, one often sees asymmetric waveforms in
baseplate recordings, such as the following:
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Observed waveforms: baseplate motion, acceleration.
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These can arise as simple harmonic sums for the displacement and
acceleration:

x(t) = —(sin(2~nt) + .25sin(4nt + 7/2))
x"(t) = (sin(2rt) + sin(4xt + 7/2)) - 47°

We would like to create a simple model in ordinary differential equations
(ODE) that will reproduce such harmonics.

One-mass models

A simple linear oscillator, a mass on a spring , is given by the ODE
mx"(t) + bx'(t) + kx(t) = f(1),
where the forcing term in vibroseis is a sweep of sinusoid,
f(t) =sin(2rt - freq(t)).

A real vibroseis device shows a non-linear response, with a range of
harmonics appearing:
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Our best attempts at modelling with one non-linear oscillator gives the
following time-frequency responses, which are not representative of the
real device (non-linear in x’, non-linear in x, respectively):
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Two-mass models

Following Easley (1995) we produce a simple two-mass model that
iIncludes the motion of both the baseplate and reaction mass.
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Vibroseis: reaction mass, baseplate, spring, dashpot.

The ODE system describing the motion includes their masses m. M of
both, displacements u, U, a spring constant kK and damping constant b
connecting the two masses, and a force f that drives their motion. The
pushback force from the earth is F and acts directly on the baseplate.

mu"+ bt —U)+k(u—U)=+Ff+F
MU" — b(u — U — k(u—U) = —f

Including a sinusoidal driving force f(t) with frequency range from 5 Hz
to 200 Hz, and a nonlinear response F of the earth, we obtain
time-frequency responses on the baseplate and reaction mass as

follows:
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Baseplate and reaction mass acceleration, non-linear earth.

It Is notable that the harmonics appear strongly in the baseplate, not so
In the reaction mass. It is apparent that only the odd order harmonics
are appearing in the baseplate, which is not quite what happens in a
real baseplate recording where even and odd harmonics appear. The
higher harmonics are clearly being aliased once they peak at the
Nyquist frequency of 1000 Hz. This ia an artifact of the ODE solvers
used in MATLAB.

t Is also noteworthy that we did observe both odd and even order
narmonics appear, when using low-order ODE solvers. These are
ess-accurate methods and the results were misleading. The harmonics
persisted even when the ODE system was reduced to a linear system —
for which there should be no harmonics. The following plot shows the
strong presence of the 2nd harmonic, in both the baseplate and
reaction mass data.

1000 1000

800

600

Frequency (Hz)

10 10
Time (sec) Time (sec)

Baseplate, reaction mass acceleration, low order solver.
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Waveform results

A plot of the waveforms produced by the non-linear two-mass model,
demonstrates the strong presence of harmonics, as follows:
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Baseplate acceleration, amplitude versus time.

Unfortunately, it is not the response we were hoping for. The waveform
IS very spiky, but from the real observed waveforms, we expect
flattened, asymmetrical shapes.

Future work

The two-oscillator model is promising, and requires an approach to the
earth’s non-linearities that will give the full range of harmonics that is
seen in real vibroseis data. Removing the welded-contact assumption
IS one approach, which allows for the possibility of a “pogo stick” effect
where the truck loses contact with the ground. Another is to model an
asymmetric non-linear earth response. There are also physical devices
on the truck which constrain the motion of the reaction mass anc
baseplate — including these would represent another mechanism that
could create harmonics. Some models in the literature include a third
oscillating mass, as representing the effective ground mass.

More complex models as suggested by Wei (2010), include the flexing
of the metal baseplate in order to accurately account for the harmonics.
This would be an interesting model, but perhaps there are simpler
models that will be successtul.

Finally, there is the control machinery in the vibroseis device that could
be included in the model.
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