Partial wave analysis of seismic wave scattering
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Introduction

We study the partial wave analysis of elastic wave scattering In
an isotropic radially heterogenous medium in the context of Born-
approximation. We show that in the presence of scatterer there is a
phase shift in the outgoing scattered spherical elastic wave. We also
obtain the scattering amplitudes for scattering of P- and S-wave in terms
of phase shift for P-, SV- and SH-waves. We show that the phase shifts
can be calculated using the Lippman-Schwinger integral equation.
Lippmann-Schwinger equation for scattered wave which in it's asymp-
totic behaviour
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Figure 1: Scattering from a localized Scatterer. Incident plane wave after scattering
changes to a spherical wave with an angle dependent distribution called scattering
amplitude which modulates the outgoing wave according to direction. It carries all the
physics information.

One-dimensional scalar wave scattering

he scalar wave equation in one-dimension

¢"(X) +w?c ?(x)p(x) = 0. (2)

The essential assumption in perturbation theory is definition of reference
medium with a constant velocity ¢y and a actual medium withe spacial
dependent velocity ¢(x). The relationship between the velocity in actual
and reference medium is expressed by

c(x) = co+ oc(x) = co(1 + £(X)), (3)

where |£(x)| < 1 is the fractional velocity. Wavefield in the reference

medium IS 1

do(X) = sin(kx) = 2I(ca*”“ — e ), (4)
In perturbed medium
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where O, called phase shift and is related to the perturbation in the
medium, and scattered wave

hsc(X) = Pp(X) — do(x) = €k sin 5", (6)
For the anelastic scattering the total wave field is given by [1]
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where 4 Is a real number such that 0 < v, < 1 and scattered wave field
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P2 (X) = 56'5"(’}/;( + 1) sin(kx + 8x) + 57€ (v, — 1) cos(kx + k).  (8)

One-dimensional scalar wave scattering continued
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Figure 2: Model representing an actual medium in which the velocity is higher than the
reference medium in the perturbation interval 0 < x < a(left). Diagram illustrating the
phase shift as a function of x = ka for perturbation factor £, = 0.1(right).

Using the continuity of wave function and it’s first derivative we obtain
the phase shift as
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In fig.2(right), we can see that the shape of potential and phase shift
are almost the same.

0k = tan™ Ka. (9)

Elastic wave scattering

Incident P-wave with the polarization in the z-direction,

P=ze" =" i""(2/+1)Lp. (10)

Incident S-wave wave can be either xe’*? or ye'*?, which can be written
as a superposition of SH and SV waves
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Where L;,. N;;; and M,m are the Hanson vectors which are the solutions
of the vector Helmholtz equation [2]. In the asymptotic region far from
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Where P, is Legender polynomial. If the initial wave is P-wave, the total
wave field after scattering is a superposition of initial P-wave, scattered
P, and S-waves

U=> A'Lo+ B'Lo+ C'Np. (13)

In asymptotic region the wave field has the following form
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Where the first term iIs the initial P-wave In the z-direction, the second
term is the scattered PP-wave and the third term is scattered PS-wave
and F°(0) are the scattering patterns for PP and PS-wave modes. In-
serting the asymptotic forms of P and SV waves in (13) and comparing
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Elastic wave scattering: continued

to (14)
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where 6,” , the phase shift for scattered P-wave, given by
B
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It the phase shift goes to zero, we don't have the scattered P-wave,

namely the perturbation in the medium appears as a phase shift in scat-
tering potential. The scattered wave satisfies in
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Where Born vector potential is

sin o7, (15)
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Lippman-Schwinger integral equation which expresses the scattered
wave field in terms of retarded green function and Born potential term

IS given by
= — / dQ’ / redr'Ve(r) - G.(r, 1),
Using the above equation we can determine
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Where, g and v are the radial components of dyadic green functions and
vector potentials.

Conclusions

In born approximation, scattered wave field is spherical wave function
undergoes a phase shift comparing to the case that perturbation is ab-
sence. This is the main idea of the Partial wave analysis. The analysis
for scalar waves(quantum problems) and electromagnetic waves are well
studied. However for elastic wave, the case Is investigated rarely spe-
cially the phase shift interpretation of the scattering. In this research we
applied the conventional partial wave analysis used in quantum theory
and electrodynamics to the elastic wave scattering. We demonstrate that
the scattering amplitude can be be expressed by one unknown param-
eter called phase shift obtained by the Lippmann-Schwinger equation.
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