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Abstract

The minimum phase characterization of impulsive seismic sources is an
essential step in the deconvolution process, to remove source signature
with appropriate phase. Calculation of the minimum phase equivalent of a
given signal is numerically sensitive, given the presence of logarithmic
singularities in certain algorithms.

We propose a simple oversampling in the frequency domain that
accommodates the singularity, and show with a few examples that the
performance is improved.

Introduction

Two popular methods for numerically computing the minimum phase
source wavelet are the Wiener-Levinson double inverse method, and the
Kolmogorov or Hilbert transform methods. Both begin with an estimation
of the source’s amplitude spectrum based on an autocorrelation of the
seismic record, and then apply a numerical algorithm to estimate the
phase spectrum. There is also a close connection between minimum
phase signals and outer functions that arise in the theory of complex
analysis.

Both the Hilbert transform and outer function calculations involve a direct
integral of the log Fourier spectrum, which can result in numerical
instabilities.

Hilbert transform:
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Examining the logarithmic singularity

Quter function:

The integral of log can be approximated by a finite sum, with an error term
given by Stirling’s formula:
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The log(2pi)/2N is the error and is significantly large, even when the
logarithm is stabilized by adding a small epsilon to the argument. The
following table shows the error is much more sensitive to the size of N
than to the size of the pre-whitening constant:

e=10"%|e=10"°%| e =108
N = 20 8.2 8.2 8.2
N =200 | 0.73 0.00 0.66
N = 2000 | 0.16 0.066 0.065

Table 1: Percentage error when integrating across a logarithmic singularity. Large N
oversampling is most effective in reducing the error.
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Oversampling algorithm

With this suggestion, we propose a modified algorithm where the Hilbert
transform in Kolmogorov, or the outer function calculation, is computed in
a highly oversampled manner. With a few test runs, oversampling by a
factor of 128 appears to give stable, noticeably improved results. As these
computations are FFT-based, there is only a small performance penalty.

Test runs on a Ricker wavelet

As a demonstration, we compute the minimum phase equivalent of a
time-limited 20Hz Ricker wavelet, with 2 mS sampling. As shown in
Figure 1, the oversampled method pushes the waveform forward in time
compared to the standard double inverse method. It also removes what
appears to be an extraneous bump late in the waveform.
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Figure 2: A Ricker wavelet and its minimum phase variant, computed by two
different methods. The new oversampled method moves the waveform forward in
time, and remove an extraneous bump att =0.1.

Test runs on Boxcar wavelet, exact solutions

A boxcar wavelet has an exact minimum phase solution, which simply
moves the leading edge of the waveform to the t=0 position. Using this as
a test waveform, we can see how well each algorithm works by comparing
the results with the exact solution. Figure 3 shows how the new
oversampled method outperforms Kolmogorov.
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Figure 3: A Boxcar wavelet and its minimum phase variant, computed by two
different methods. The new oversampled method is successful at positioning the
waveform and flattening the top and base.
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Test runs on an exponential ramp, exact solutions

An increasing exponential ramp also has an exact minimum phase
solution, which is the mirror image as a decreasing ramp. Figure 4
compares the performance of the new oversampled method to the usual
methods. Oversampling gives a near-perfect result, with no overshoot or
undershoot at the leading and trailing edges.
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Figure 4: An exponential ramp is correctly converted to its mirror image with the
new method. Double inverse and Kolmogorov overshoot at the start and end of
the resulting ramp.

Future Work

We will test on real data and determine if there is any significant
improvement in deconvolved seismic images. The new algorithm moves
the minimum phase peak somewhat forward in time — which may give
location results that are slightly different than what we are used to seeing
in images. We will investigate how to reduce phase errors that occur with
finite-length time and frequency windows. We will include the
oversampled method as a standard routine in the CREWES toolbox.

Conclusions

The minimum phase calculation is unstable in part because of possible
logarithmic singularities in the log amplitude spectrum that arise in the
integral transforms. Numerical calculations are made more accurate by
oversampling in the frequency domain. Sample tests with Ricker wavelets,
boxcars, and exponential ramps show improvements in the modified
algorithm. Work is needed to verify this gives an improvement in imaging.
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