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Abstract
Full waveform inversion (FWI) is a powerful tool to reconstruct
subsurface parameters. This highly nonlinear inverse problem is
normally solved iteratively to minimize a misfit function, which is
usually defined as the distance between the observed and predicted
data, by gradient-based method or Newton type method.
Incorporating more nonlinearity within each update in FWI,
especially for multiparameter reconstruction, may have very
important consequences for convergence rates and discrimination of
different parameter classes. In this study, we focus on acoustic
media with variable density, and the goal is to simultaneously
update velocity and density, other parameterization is also
discussed. We start from the physical interpretation of both the
gradient and the Hessian of the misfit function, and derive one
approach from the Newton method, to include the additional term
of the Hessian, which contains the second-order partial derivative of
the wavefield and related to the second-order scattering, into the
gradient, to construct a new descent direction, as well as a set of
basis vectors of a subspace that step length can be searched
separately for different parameter classes or perturbations.

Theory and Method

FWI method is to seek the high resolution estimation of the
subsurface model parameters by solving a nonlinear least-squares
minimization problem. The misfit function is defined as the norm of
the data residuals

with dsyn(m, xs, ω)=Ru(m, xs, ω) is the synthetic data generated
using the current model m, R is the sampling matrix that sampling
the wavefield from the whole space to the receiver’s locations, and
dobs(xs, ω) is the observed data, T is the transpose operator and * is
the conjugate operator. Here, we suppose the wavefield can be
obtained by the frequency domain acoustic wave equation

where vector m is the model parameters with different classes, e.g.,
bulk modulus κ and density ρ, or velocity v and density ρ and so on,
A(m, ω) is the impedance matrix, and it is a sparse banded matrix,
as the number of non-zero diagonals are related to the finite-
difference scheme, e.g., in this study, we use a five-point finite
difference scheme, so the impedance matrix has five non-zero
diagonals, and u(m, xs, ω) is the pressure wavefield, generated by a
point source f(xs, ω) located at xs.

By expanding the misfit function as a Taylor series up to the second
order

Then a perturbation δm can be found to minimum of the misfit
function under the quadratic approximation
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Conclusion
In this study, we first derive a nonlinear descent direction from the Newton
method to perform a multiparameter FWI, which alters the gradient with the
second-order scattering, and can be used to predict the model perturbation
using a truncated Gauss-Newton method. We then use this nonlinear descent
direction as a set of basis vectors to construct a subspace, in which different step
lengths can be obtained for different parameter class, as well as linear/nonlinear
perturbations for each parameter class. Gauss-Newton Hessian product with a
vector is involved to find the local minimum in the spanned space. The behavior
of the subspace methods for both linear updates and nonlinear updates are
compared with traditional FWI methods. The subspace methods have better
convergence rate, as well as better reconstruction of the velocity model. The
reconstruction of density model, however, could still be effected by the cross-
talk artifacts, when Hessian is not considered in the inversion.
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The Hessian H(m) contains two terms, the first term
H1(m) contains the second-order derivatives of the
wavefield, and when it is neglected, the second term
H2(m) becomes the Gauss-Newton approximation of the
Hessian operator.
Rewrite the full Newton inversion equation (Pratt, 1998)

1. Taking only the first two terms, we can get an
approximate version of the full Newton method

When adding nonlinearity into the descent direction

Which can be considered as another linearized inverse
problem with a new descent direction g+H1δm1, or to say
including the second-order scattering caused by the
perturbation from a linearized inverse problem in the
original gradient. In the monoparameter case, we can find
out that it is consistent with the nonlinear descent
direction we have studied based on the scattering theory
in last year’s report.
2. Two perturbation can be inverted using this
approximate version of the full Newton method, which are
related to the standard Gauss-Newton method result and
second-order terms

Then δm1 and δm2 can be used to form a set of basis
vectors {aj}, so that the true perturbation can be found as

The scaler µj can be found by solving

Or in matrix form

Explicitly calculating both terms of the Hessian operator in
this proposed method is still not possible for the large size
of FWI problem, especially in the multiparameter case.
However, the calculation of a product between the
Hessian H1(m) and a vector is needed to first calculate the
second-order scattering related perturbation, and the
inverse of H2(m) can be added to the perturbation
iteratively by a truncated Gauss-Newton method, with the
help of a Gauss-Newton Hessian-vector product.( )1δ −= −m H m g
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