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Abstract
The Hybrid perfectly matched layer (H-PML) is extended to simulate
second order displacement-stress elastic wave equations. In this re-
port, the simulation results with both H-PML and C-PML in isotropic
and anisotropic media are compared. H-PML is capable of absorbing
boundary reflections in both isotropic and anisotropic media, but the
C-PML only works perfectly in isotropic media. The simulation results
with H-PML for both first order and second order elastic wave equa-
tions show its efficiency in boundary reflections suppression.

Introduction and Theory
In H-PML, for the new operator ∇x̃ = [ ∂∂x̃ ,

∂
∂y ,

∂
∂z ], where, ∂

∂x̃ = 1
sx

∂
∂x ,

∂
∂ỹ = 1

sy

∂
∂y and ∂

∂z̃ = 1
sz

∂
∂z . The complex frequency shifted stretched-

coordinate metrics sx, sy and sz are

sx = κx +
dx+mx/zdz

αx+iω

sz = κz +
mz/xdx+dz

αz+iω ,

(1)

Using the complex coordinate variables x̃ , z̃ to replace the original co-
ordinate variables in elastic wave equations in VTI media, we obtain
new displacement-stress equation system in frequency domain
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ρ
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1
sx

∂σ̂11
∂x + 1

sz

∂σ̂13
∂z

)
−ω2û3 = 1

ρ

(
1
sx

∂σ̂31
∂x + 1

sz

∂σ̂33
∂z

) , (2)

and
σ̂11 = 1

sx
c11

∂û1
∂x + 1

sz
c13

∂û3
∂z

σ̂33 = 1
sx

c13
∂û1
∂x + 1

sz
c33

∂û3
∂z

σ̂13 = c44(
1
sz

∂û1
∂z + 1

sx

∂û3
∂x )

, (3)

In order to get the H-PML formulation in time domain, equation set (2)
and (3) should be transformed back to time domain by inverse Fourier
transform. Take the first equation of equation set (2) as an example,
we rewrite it by adding convolutional terms as

∂2u1

∂t2 =
1
ρ

(
DFT−1

[
1
sx

]
∗ ∂σ11

∂x
+ DFT−1

[
1
sz

]
∗ ∂σ13

∂z

)
, (4)

Introducing a new differential operator in the x direction ∂x̃ =

DFT−1
[

1
sx

]
∗ ∂x, this new operator can further be written as

∂x̃ = 1
κx
∂x + ψx, (5)

Therefore, equation (4) in time domain can further be expressed as
∂2u1

∂t2 =
1
ρ

(
1
κx

∂σ11

∂x
+ ψxσ11 +

1
κy

∂σ12

∂y
+ ψyσ12 +

1
κz

∂σ13

∂x
+ ψzσ13

)
, (6)

And the first equation of equation set (3) can be rewriten as

σ11 = c11

(
1
κx

∂u1

∂x
+ ψxu1

)
+ c13

(
1
κz

∂u3

∂z
+ ψyu3

)
. (7)

Examples
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In the above Figure, the time evolutions of the normal stress components τxx
(Left) and τzz (Right) for three receivers are plotted. In this Figure, simulations
with C-PML (red line) matches perfectly with simulations with H-PML (blue line).
C-PML and H-PML have almost the same absorbing efficiency for second order
displacement-stress wave equations in isotropic media.

In the Figure below, waveforms of normal stress compo-
nents in the case of both C-PMLs (red dotted line) and
H-PMLs (blue line) for absorbing the boundary wave are
displayed. The results demonstrated the efficiency of the
H-PML in comparison with the C-PML in this VTI model,
especially when we zoom in the results from 0.6 s to 1.6
s, the stress components obtained by using C-PML suf-
fer severely from the oscillations because of the boundary
reflections.
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In the Right Figure, waveforms of normal stress
components in the case of both first order velocity-
stress wave equations (blue line) and second order
displacement-stress wave equations (red line) with
H-PMLs are displayed. For different receivers, the
normal stress components both in X direction (Left)
and in Z direction (Right) match quite well for the two
different wave equation sets. The results demon-
strated the efficiency of the H-PML in both the wave
equation sets. Snapshots of second-order H-PML is
also shown in Left Figure.

Thrust fault model
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The next example is the simplified anisotropic thrust fault model, in which anisotropy
present through different depth intervals. In Left Figure, a vertical source is located
in the upper middle of the fault. With the propagation time increasing, the waveform
travels through the model to the boundaries, however, no boundary reflections can
be found in each time slice. And the waveforms are absorbed when they travel into
the PMLs. In Right figure, the seismograms of stress components σxx and σzz show
the boundary reflections are effectively suppressed. The receiver stations are evenly
spaced along x-direction with a same depth of the source.

Conclusions
In this paper, the H-PML is modified to be applied
for suppression of the artificial boundary reflections
in second-order wave equations. Its results in both
isotropic and anisotropic medium are compared with
those of the C-PML approach for the second-order
wave equations. The simulation results of the H-PML
for first-order and second-order wave equations are
also compared. The H-PML can provide satisfying ab-
sorbing efficiency for both first and second-order elastic
wave equations. And both of the two PMLs are sta-
ble and efficient in isotropic medium, yet, instability can
be observed in anisotropic medium when C-PML is ap-
plied.

Acknowledgement
The authors thank the sponsors of CREWES for con-
tinued support. This work was funded by CREWES
industrial sponsors and NSERC (Natural Science and
Engineering Research Council of Canada) through the
grant CRDPJ 461179-13.

www.crewes.org


