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. Abstract Facies Classification with Gradient Boosting
Machine learning is a field from computer science that aims to create algo- Description
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Classification from well logs, while the second is the application of Deep Learn- -
Iing for Salt identification in seismic images. |

The application of gradient boosting on facies classification uses patterns on Salt Identification with Deep Learning

well logs values to predict the correspondent rock types. As a supervised learn-
iIng problem, the model is trained on wells where the true answer is known.

Description ‘ Original (green) and predicted (red) salt over seismic images
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For the TGS Salt Identification Challenge, the goal is to use a set
of 4000 seismic images with their respective masks (pixel classi-
fication) to train a machine learning model that predicts salt bod-
les on 18000 test images with the higher accuracy. A modified
Convolutional Neural Network model, a U-net shaped series of
encoders and decoders, and data augmentation to multiply were
used. This deep learning model has a high number of parame-
ters and requires high performance computers (such as GPUs)
Facies classification was successfully done using a gradient boosting algorithm. to be trained. The predicted salt over the validation set had a 0.8
The well logs provided were cleaned, completed for missing data, and aug- average score on the loU (intersection over union) metric.

mented to improve the facies predictions. This work-flow increased the accu- |,

The salt identification project uses the data form the TGS Salt Identification
Challenge from the Kaggle website. The proposal is to use seismic images and
a set of known answers to train a deep learning model to predict salt bodies on
new seismic images. As this is a problem of image segmentation (pixel classi-
fication), a modified Convolutional Neural Networks algorithm was applied.

. . U-net: a modified Convolutional Neural Networks algorithm - ‘ -
racy from 47% to 60%, on nine different rock types. 2 | e S T
identificati T - L / ~ W A
Salt identification showed to be very difficult and costly to achieve, as it is an f L1 PR

Image segmentation problem. To predict the salt it was required a deep learning
model with a high number of parameters. Also the number of training images
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was not enough. Data augmentation was applied multiplying the number of ] g . e
training data by 4, imprOVing Significantly the IOU Score tO 0-8- Modified % \CONVOLUTION-rRELU POOLING CONVOLUTION + RELU POOLING y (LATTEN coilurjgtso SOFTMAX y
Convolutional G Y
Neural Networks FEATURE LEARNING CLASSIFICATION
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