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Introduction

In this work we introduce the unbalanced optimal
transport (UOT) distance with Kullback–Leibler
divergence to full waveform inversion problem to
mitigate the cycle-skipping issue and reduce the
nonlinearity during the optimization. An entropy
regularization and a scaling algorithm have been
used to compute the distance and its gradient
efficiently. Two normalization methods which
transform the seismic signals into non-negative
functions have been compared and the gradient
of objective function has been derived through
adjoint state method. Three numerical examples
in one and two dimension are provided.

Optimal transport problem

Let X = Y = {x1, x2, · · · , xN} ⊂ Rd, µ =
∑

i fiδxi,
ν =

∑
i giδxi. Define cost matrix C as

Ci ,j = |xi − xj|2. The optimal transport problem
between µ and ν in discrete form is:

min
T∈RN×N

〈T ,C〉 =
N∑

i ,j=1

Ti ,jCi ,j, s.t. T1N = f , T T1N = g.

(1)

Regularized unbalanced optimal transport

Given cost matrix C, regularization coefficients ε
and εm, the regularized unbalanced optimal
transport distance between f ,g ∈ RN

+ is:
W 2

2,ε,εm
(f ,g) = min

T∈RN×N
〈T ,C〉 − εE(T )

+ εmKL(T1N|f ) + εmKL(T T1N|g)
(2)

I Entropy regularization term E(T ) is to increase
the computational efficiency.

I The KL(·|·) is Kullback-Leibler divergence as a
mass balancing term.

Iterative scaling algorithm

In order to solve UOT distance and its gradient, a
scaling algorithm is used here. For problem in
equation (2), given matrix K with Ki ,j = e−Ci ,j/ε.
Starting with an initial value v (0) = 1N, compute
iteratively with:

u(n+1)
i = (fi/

∑
j

Ki ,jv
(n)
j )εm/(εm+ε),

v (n+1)
j = (gj/

∑
i

Ki ,ju
(n+1)
i )εm/(εm+ε).

Then, T ∗i ,j = u∗i Ki ,jv∗j . The gradient of (2) is:

∇fiW
2
2,ε,εm

(f ,g) = −εm

(
e−φ

∗
i /εm − 1

)
,

where φi = ε log ui.
Normalizations with linear and exponential
transform are given by:

hlinear,k(f ) = f + k ,
hexp,k(f ) = ekf .

Shifted Ricker example

0.3 0.4 0.5 0.6 0.7
Time shift (s)

0.0

0.2

0.4

0.6

0.8

1.0
(a)

0.3 0.4 0.5 0.6 0.7
Time shift (s)

0.0

0.2

0.4

0.6

0.8

1.0
(c)

k=0.6
k=1
k=10

0.3 0.4 0.5 0.6 0.7
Time shift (s)

0.0

0.2

0.4

0.6

0.8

1.0
(e)

k=0.5
k=1
k=1.5

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

1.0

0.5

0.0

0.5

1.0

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.002

0.001

0.000

0.001

(d)
k=0.6
k=1
k=10

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.00

0.01

0.02

0.03
(f)

k=0.5
k=1
k=1.5

Figure: (a), (b): misfit function and adjoint source using L2 distance. (c), (d): misfit
functions and adjoint sources using UOT distance with linear normalization. (e), (f):
misfit functions and adjoint sources using UOT distance with exponential
normalization.

Single layer model
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Figure: Set the velocity model c(δc, z) = c0(x , z) + δcH(z) in a region with 1km wide
and 1km deep. We use 51 receivers at the top of the region, and a source with 10 Hz
Ricker wavelet located at x = 0.5km, z = 0.05km. (a), (b), (c): misfit function by using
L2 distance, UOT distance with linear and exponential normalization respectively.

2D crosshole model
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Figure: (a): the true velocity model. There are 11 sources with 10 Hz Ricker wavelet
which are equally spaced on the left side and 101 receivers on the right side. (b), (c),
(d): inverse results of gradient descent after 5 iterations with L2 distance, UOT
distance with linear and exponential normalization respectively.
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