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In this study, we combine the recurrent neural network with
the knowledge about elastic wave propagation and inversion
theory, which forms the theory based machine learning
method for full waveform inversion. Based on the Automatic
Differential method, the exact gradient based on
computational graph would be calculated to update the
elastic model. In order to tackle with the cross talk problem
in multiparameter full waveform inversion, by modifying the
theory based RNN cell, we use different parameterization to
mitigate the trade off issue. From the numerical inversion
tests, we can see the different effects on the inversion results
with different parameterization. It could be the pioneer for
us to introduce more complicated machine learning methods
into Geophysics inversion problems.

INTRODUCTION

ELASTIC WAVE EQUATION RNN CELL

Fig 1. Elastic RNN cell

Figure 1 shows the basic structure of the elastic RNN cell.
This elastic RNN cell is designed according to the isotropic
elastic wave equation, equation (1) . The light blue ovals are
the stress fields the purple ovals are the velocity fields. The
green circles represents the mathematical operations. The
yellow boxes are the trainable parameters.

In this study, we perform full wave form inversion by using the recurrent
neural network. The RNN cells are designed according to the elastic RNN cell.
Based on the Automatic Differential engine built inside the machine learning
library, the exact gradients based on the compactional graph would be
calculated. Numerical test shows that RNN based FWI can give us the right
inversion results. Stress tests shows that this method is still sensitive to
noise. To tackle with the cross talk problem we use different
parameterizations to release this issue, we can see that different
parameterization can help to improve the inversion results. Noise test
shows that the inversion is still sensitive to noise.

NUMERICAL TESTS

CONCLUSIONS
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Fig.2. Velocity parameterization Fig.4. Stiffness matrix  parameterizationFig.3. Modulus parameterization

Fig.6. Modulus parameterizationFig.5. Velocity parameterization Fig.7. Stiffness matrix parameterization

Fig 9. Noise stress test

Fig.8. Data misfit

Figure 8 is the data misfits. We can see that the inversion for the velocity parameterization is more stable than
other parameterization. Figure 9 shows the inversion with different levels of noise we can see that this
inversion method is sensitive to noise. The inversion results are influenced by a small amount of noise. Also
the inversion for Vs is more sensitive than the inversion for Vp and density.

Figure 2-4 are the inversion results by using the RNN based full waveform inversion with different
parameterization. Three box anomalies are located at different positions of the model and we can see the
different effect of different parameterization on the inversion results. The cross-talk problem has been
mitigated by using a different parameterization. Figure 5-7 are the results of another model. We can see also
see the effect of the different parameterization on density.
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