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Showed tO Work better in thlS data- Figure 3 - Curve plot against depth: standard curve left and residual right. Histogram are by lithology

In the first part of this report, we intend to share our
observation following log normalization & depth trend R N ——
removal on DT, RHOB & DTS estimation using XGBoost || Gardner Relationship
(Chen & Guestrin, 2016), one of the few Machine Learning N
solutions that do not require completed dataset. In the
second part of this report, we will look at using these
empirical relationships to evaluate mineralogy. In the final
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All Data Crosspiot of TVD and Vp . - Al Dats Crosspiot of TVD and Vs Figure 4 - Comparison of Empirical Relationship with input shale mineralogy (left) and XGBoost estimation GOk
(right). The large scatter centred around Ip=5000 results from the shortage of shallow input data (under
N g 2000m burial depth) coupled with the uncertainty in mineralogy.. o
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