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Acoustic impedance (Al) and elastic impedance (El) give direct ) | ‘ + All components of Z are needed to accurately describe the
connections to the mechanical and fluid-related properties of the = £ £ eflaction AVO effects

CO, storage complex. However, evaluation of their subtle time- ; 2. E . 1D V.V ratio f (]

lapse (TL) variations is complicated by the scaling and low- | . { 3 s/ Vp FALO TTOM WeIl 10gS

frequency uncertainties, and the various El definitions involve e » Decrease is strongerin Z,_ thanin Z,,, or Al

different approximations and do not represent an elastic property of | % . Less variations of Z___ and Z._._ due to the increase of V/V, ratio
the medium. To solve these issues, we perform accurate waveform i 20 - ’ . .
calibration for TL seismic data, and apply a robust impedance- ‘E’ ~ S SV S . . , il A . FO . i
inversion approach based on calibration of seismic records by T = 20 TR XN
using the well-log data. We also use an exact expression of El in a I % AT T k.
matrix form, which truly represents the intrinsic physical property - Z o P ;| - . o Wl C
and accurately describes P- and S-wave propagations at arbitrary ?7 LF % % Fo0 5o s ol A2,
iIncidence angles. The above approaches are applied to TL DAS - % % } % T e - -
VSP data from the Field Research Station CO, injection project in ¢ f ¢ ~
southern Alberta, Canada. TL impedance variations are observed » £ £ ! £ { & £ £ 00 4 —_—
within the CO, Injection zone, which are interpreted as being _ _ _ _ % 45 w8 S8 B0 55 78 7 ET T
related to the CO, injection. Velocity, density, NEI, Rl and components of impedance matrix Z at 30° R . e

incidence angle in the injection well from the FRS CO, injection project. The

Al log is shown in red in NEI, Rl, and Z_, . for comparison. The CO, injection
Diffel"ent El measures zone BBRS is indicated.

From the linearization of Zoeppritz equation, Connolly (1999)
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initially introduces El as Waveform calibration 0
El = pV, (p‘“{““zQfoa“zQVS‘SK““zQ). » Achieve accurate consistency of the records from different 0 3 - e
T rearsiva The o merin ality | ized El q vintages while retaining the TL variations within the target zones o o iy I S )
Yy ISSU€E, a normalize wWas proposea. _ o _ _ _ e o e—
e e i * Time shifting, amplitude corrections, and spectral shaping LRL N ek e o8 2
= [(p/po) (7e/Vea) ™ (Vs/Vs0) } » Similar to cross-equalization, but applied locally by time-variant 9 o m w w © s s w0 o % @ v @
L . linear filtering k== P RPE |
To address that reflectivity is integrated along nonphysical path of . _ - [y 2 "l
constant g, a raypath El such as by Santos and Tygel (2004) is Vo 0w w0 w Vw0 @ w w X o 50 60 70 80 250 o' e —--.:'; Ky
B p ; 2 2 5 5 200 = 200 B 200 1 monitor ESOO . - . :‘ . i
/i = 5 9 exp[— ( -I-}/)Vsp } ey o oo
\/I—VPp 250 fun — FBASL 250 J— 250 ] ——— et e -
El matrix - N I —
We use the El matrix proposed by Morozov (2010) from Hooke’s .
2 5 (ﬂ.+2,u)8 10 M u Cross sections of a) baseline, b) monitor and c) calibrated monitor VSP eoof_j rIhopet NN
{ szz i ! { ] CDP stack. The BBRS reflection is indicated. 171270 a5
=/ N MO O, g Thwi= = 5 TER,
~ (ﬂ,—l—zlu)ﬁz ﬂ,@x . . - - gsoo - ~ ': W &
Z=—( 0 0 ] relating the displacement to stress is defined Al inversion and TL variations <2
as the impeijance mzatrix * The amplitude spectrum matches that of the well-log Al located -
| near the imaging location e TR —— -
* Represent the intrinsic physical propert . 06 085 11 135 16 185 4% -5 1 & % b
_ P _ PRy property _ * Below the seismic frequency band, the Al also matches the one B
‘ R|9_°|'0U3_|y (_:Iescrlbe all cases of P/SV-wave propagation at from well logs Cross sections of baseline and monitor El and their TL variations of
arbitrary incidence angles components a) Z,,, b) Z, ., c) Z_,, and d) Z_ of impedance matrix Z at 30°

» At each imaging location, the spatial pattern of reflectivity

= incidence angle
matches that of the seismic volume

By considering a plane wave with the displacement

CDP CDP CDP

expli(kcoséz + ksinbx - wt)], the conventional impedance matrix is o8 & & B = 8 n e 7 _f T & . . . N .
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For the situation of incident P-wave, each component of impedance ioo.f e a = | . . .
natrix 7. becomes ’ P P R I PN Morozov, |. B., 2010, Exact elastic P/SV impedance: Geophysics,
, (1 oy 2) , AL BN 28~ | 75, no. 2, C7-C13.
Z_ = pV,coso, Z_ =pV (1-2V [V, )sin@, - | B, L.
s =5 x =P P RSN Santos, L.T., and M.Tygel, 2004, Impedance-type approximations
Z,=pV,(VEV7)sing,  Z, = pV, (VS [Vy)cosb, LS5 f s s ==  of the P-P elastic reflection coefficient: Modeling and AVO
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where the calculation reduces to the Al (pJ%), and the Vi/V; ratio Cross sections of a) baseline Al, b) monitor Al and c) relative Al variations. PRy
from AVO Iinversion. Dashed and solid black lines indicate observation well and injection well.
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