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Abstract MLP-based EIFWI field data inversion results - [T T T ]

In 2018, the Consortium for Research in Elastic Wave Exploration Seismology (a) (b)
executed a 3D walkaway-walkaround VSP survey, integrating both three-component T R ul
accelerometers and DAS fibres. This investigation employs implicit full waveform

iInversion to determine the baseline model based on 2018’s accelerometer data. This
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implicit elastic full waveform inversion harnesses neural networks to produce elastic A
models. The neural network’s weights are optimized to generate refined elastic E 1 E 150 E 10l
models that minimize data misfit, obviating the need for precise initial models. A TiFEts) et g g 2
cqmparison of inversion ouj[comes with well-log data is encouraging, gnd the | Figure 3: The Original seep (a) and the Klauder wavelet(b). - - - e
alignment between synthetic and observed data further underscores its promise.
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The standout advantage of the IFWI method is its independence from sl _ _ 5 01—
precise initial models when computing FWI. Nevertheless, it does ) I — T | - ]
mandate the well-log data of the area under investigation. This data Tw o7 s W om om0 o5 m . o st e -1l - L
offers a comprehensive overview, particularly the mean and standard | | | . | . . . .
doviation of the desired lasiic parameer. Such information ensures Figure 4: Fitere Kauder wavelet 2) and thlrspectums(o) e e e e
that the resulting elastic models yield values within an acceptable and (a) L _ — . blue lines are the final IFWI prediction results.
plausible range. Also, inversion results’ uncertainty quantification(UQ) o I I H I / | | | __ e e e o
is relatively cheap. In this MLP-based EIFWI, we can use the dropout  £0i] 1 £, L0302 01 00 01702 0303 02 01 00 ol 02 03
method, which randomly mutes the weights in the neural network 4 ] —— | | E | /\/"”—\ | | | fo BRI G obes ation Canitiatresisiis]

during the forward passing of the neural network, which can provide

computationally efficient methods for sampling models around the
Inversion results. Figure 5: Based on the minimum phase assumption, transforming the zero-phase

wavelet(a) into the minimum phase wavelet(b).
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. Network  J€===" models | qurnns Semmp Figure 6: Original and filtered data in the time domain (a) and the frequency domain
s spectrum(b).
®_ ‘ . 5 Figure 11: . MLP-based IFWI vertical component data comparison. (a) Observe
4 N — = - . ;? accelerometer data of the vertical component, with amplitude normalization, initial
: I B e | S| £l | IFWI vertical component, and the initial residual of the Vertical components are
: O o e ;] O, —— 00w 8. = [200%vp) plotted from left to right. (b) Observe accelerometer data of the vertical components,
(MisﬁtD ) — T - —— ol M. final IFWI vertical components, and the final residual of the vertical components are
Enlie ‘; | Ewle — g — ¥ Ewl . ™ plotted from left to right
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Figure 1: Training diagram of IFWI. Weights in the neural network are optimized to
generate better elastic models to decrease the data misfit. The network’s input is the Figure 7: MLP-based EIFWI results for the V, model. o o .
coordinates of the x and z directions and the well log. The well-log will help the neural N ﬁ» e f—a o .
network generate elastic models within the reasonable value range. The generated o o R — — c T = | ——
elastic models will be sent to the RNN for synthetic data. Data misfit can be calculated = S S .
with the distance between the observed and synthetic data, and we will update the g | g g
weights in the neural network to generate elastic models that decrease the data misfit. o o - m E.
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Ubistance (m)” © Distance (m) " Distance(m) Figure 12: MLP-based IFWI uncertainty quantification. The UQ of the IFWI results is

. _ obtained by forward passing the well-trained network 1000 times and calculating the

Figure B NiLF-based ElIFW results for tire 1 medel. predicted models’ mean and standard deviation. (a), (b) and (c) are the mean model
(a) (b) () of the predicted Vp, Vs, and p model, respectively. (d), (e) and (f) are the standard
deviation of the predicted models for Vp, Vs, and p, regarded as the uncertainty
quantification of the inversion results.
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Figure 2: The location of investigation area 9 oo 8. . oo &, 20007 ff o » (The inversion results of the MLP-based EIFWI has good correlation with the
_ZDODistanoce (m)m0 - - _ZOODistanoce (m)200 - - _ZDUDistanoce (m)200 We”_log data)’
» (The inversion results of the MLP-based EIFWI synthetic data align well with the
Figure 9: MLP-based EIFWI results for the p model. observed data)
» (No accurate initial models are utilized. )
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