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Wave propagation in elastic, linear, homogeneous
(inhomogeneous) and anisotropic media: A proposal

Donald T. Easley and R. James Brown

ABSTRACT

This paper constitutes, in essence, the Ph.D. thesis proposal of the first author, the
research is to be carried out under the supervision of the second author. It is proposed to
study certain aspects of wave propagation in elastic, linear, homogeneous
(inhomogeneous), and anisotropic media. This formidable subject will be broken into three
basic interrelated parts; these are: basic concepts, forward modeling, and inversion. Some
areas of research interest in these parts are: the inclusion of the rotational term in the
constitutive relations; determinations of macroscopic anisotropic discriptions from
preferentially oriented microscopic heterogeneities; the elastodynamic Green's function in
anisotropic media and/or its approximations; the statistical approach to determine elastic
constants (sparse-matrix techniques); the determination of axes of symmetry by use of the
Maxwell multipole representation; the use of (x-p) (plane-wave) methods in modeling and
inversion, the effects of singularities on the quasi-shear velocity sheet, the extension of
point-source decomposition to anisotropic media, and applying the topics above in an
inversion scheme. A brief review of work already done and possible areas of further
research of the topics above will be given. Not all these points will be brought to fruition,
but at this point it would be unwise to limit myself too severely, as I am still surveying this
vast subject. Though the area of thesis research is at present concerned mostly with the
theoretical aspects of anisotropy, there are many practical aspects of this subject - such as
fracture detection, influences on amplitude-verses-offset and general Iravehime effects that
profoundly effects seismological data - that can also be explored.

INTRODUCTION

The theory of wave propagation in anisotropic media appears to be well
documented in certain areas and lacking in others. I will attempt to make a brief survey of
the literature with which I (D.T.E.) have familiarized myself.

The basic theory is well developed in a myriad texts (e.g., Aki and Richards, 1980;
Hudson, 1980; Achenbach, 1973; Musgrave, 1970; and Fedorov, 1968); the last two
mentioned are especially relevant in terms of anisotropy. An overview of more recent
works can be found in the paper by Crampin et al. (1984). The basic theoretical
developments which will be considered consist of defining the linear constitutive relations,
developing the dynamic relationships from these and deriving the resulting expressions for
fundamental properties that can be observed (e.g., velocities, polarizations, etc...).

The forward problem is a complex one in general anisotropic media. I have broken
this into three general interrelated areas; they are:

Approximation for anisotropic situations
- Elliptical anisotropy (Daley and Hron, 1979)
- Fourier truncations (Crampin, 1981)
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Traveltime techniques
- Asymptotic ray theory (Cerveny, 1972)
- Geometric construction (Helbig, 1990)
- Field discontinuities (Vlaar, 1968)
- Riemannian space and geodesics (Eby, 1969)
- Contact transformations (Gassman, 1964; Baker and Copson, 1953)

Wave-equation techniques
- Plane waves - modeling
- reflection, transmission (Keith and Crampin, 1976)
- decomposition (Rommel, 1990)
- Finite difference/element
- Green's functions (Aki and Richards, 1980),

the form of which has not been determined except for the case of
transverse isotropy (Ben Menahem and Sena, 1990).

Finally, the inverse problem must be addressed. At present the main thrust seems to
be in using a forward modeling scheme to generate a data set which in some esthetic sense
matches observed data (Campden et al., 1990). This is a widely used methodology for
solving the inverse problem, but is somewhat an art as shown by the serendipitous
discovery made in the above mentioned paper. There are some mention of techniques
(Hake, 1986) to aid in this regard, but by and large this area is still in its infancy.
Therefore, this area provides much ground for further exploration. This, of course, can
only proceed if the first two subjects are more fully explored. The following gives a more
expanded description of areas I have concentrated on.

THEORY

To avoid too lengthy a paper, I will only touch upon some of the more relevant
relationships and refer the reader to appropriate literature. Einstein notation will be used
throughout this paper.

First, the equation of motion is derived for a volume of material subjected to body
and surface forces. With the assumption that all displacements are small the equation of
motion will have the form

]_ij,j + 9Fi = pUi (1)

where Ydj- totalstresstensor,

pFi - body force per unit volume,
Ui - displacement vector.

Since we are interested in relationship (1) within a medium with an intrinsic internal
resistance to deformation and a tendency to return to the original undeformed state; we need
a relationship between a description of deformation (strain and rotation) and a description
of deforming forces acting on surface elements (stress and surface couple). Note, we have
used the terms stress and strain as generally used in the literature, to represent the
symmetrical and irrotational components of total strain and total stress respectively. A
useful description of deformation is the ratio of change of displacement (_Ui) to difference

in position (_xi) of two points, This will be defined as total strain (Aki and Richards,
1980). Refer also to Figure 1.
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Figure 3. Description of Deformation

This ratio can be written as:

5Uj 1U
= l-tji= Uj,i= _(Uj,i+ Uij)+ _( j,i-Ui,j)6xi

_l.ij = Eij -t- {Dij (2)
where

Eij = (Uij + Uj,i)/2 = the infinitesimal strain tensor, which expresses the
deformation of an elemental volume, and is
symmetric by definition,

_ij = (Uij - Uj,i)/2 = the infinitesimal rotation tensor, which is related
to the solid body rotation of an elemental volume
and is by definition antisymmetric.

In" general, the total stress tensor (Zij) will also have a symmetric and anti-
symmetric part; these corresponds to a stress (oij) and a surface couple (xij) respectively
(Symon, 1971). This will be written in the form:

ZiJ = OiJ + 'l:ij " (3)

Assuming that body forces do not add to the deformation of the elemental volume,

the most general linear relationship between the forces represented by total stress (Eij) and

deformation represented by total strain (_tld) will be:

Xij = Aijkl gkl , (4a)
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This relationship can be seen to violate the principle of material frame indifference
(Epstein, 1990), but in materials with body moments this is inevitable as will be seen in
subsequent developments. Substitution of (3) and (2) into (4) yields

t_ii + "gij= Cijkl ekl + Bijkl 0,)kl (4b)

where Cijkl= Aijkl+ Aijlk

and Bijkl = Aijkl - Aijlk,

giving conditions Cijkl = Cijlk and Bijkl= -BUlk•

By noting that Cijkl and Bijkl are symmetrical and antisymmetrical respectively in the
indices 1and k, one can derive the form of equation (4b).

This is one area of investigation I (D.T.E.) wish to pursue. I would like to find out
the difference between the standard development based on the constitutive relation,

t_ij -- Cijkl Eij , (5)

and the general relationships (4a and 4b). Of course equations (4a and 4b) will reduce to
equation (5) if certain symmetry conditions are enforced; for instance, if there are no body
moments (refer to appendix C) then

_ij = _ji = (_ij (6)
which implies

Aijkl= Ajikl, (7)

and if there exists a strain-energy function qb defined by

_ij =
_ij ( 8 )

then

020
-- Aijkl,

0_tiJ 0_l'kl (9)

which implies

Aijkl----- Aklij. (10)

With both (7) and (10) satisfied the most general constitutive relation will be given by
equation (5). These results are summarized in the flow chart of Figure 2. The simple case
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of isotropic material has been looked at cursorily. By using standard analytical techniques
for body waves (Bullen, 1965) I was able to show that under conditions appropriate for
equations (4a and 4b) the P-wave equation remains the same whereas the S-wave equations
are modified in such a way that the velocity includes a factor introduced by the rotational
term (Appendix A).This will still be true if we have conditions represented by Box 3 in
Figure 2.

By substitution of the constitutive relation (4a) into the equation of motion (1) we get the
displacement equation:

AijklUk,lj - pi.)i = 0 ( 1 1 )

where I have ignored body forces; of course, if the medium is inhomogeneous equation
(11) would be of the form:

(AijklUk,l)d- IDi_Ji= 0 . ( 12)

PLANE WAVES

Substitution of trial plane-wave solutions of the form

Uk = (Xpkei°)(s_x_'t)= Ctpke i(k'xr'°)t) ( 1 3 )

(where C(-- amplitude scalar,

Pk = unit particle motion vector,
CO= angular frequency,

Sr = slowness vector,

Xr = space position vector,
t -- time scalar,

and kr _-propagation(wave-number)vector)

in equation (11) results in the following condition, for a plane wave solution to exist,

(AijklSjSl - P_ik)Pk = 0. ( ! 4)

Equivalently, one may write:

(Aijklnjnl- pV2_Sik)Pk= 0, ( 15)

where v _- phasevelocity,

and Si= n_v.
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(BOX 1)

General Case

Y'ij = Aijkl _kl

(Yij+ "l;ij= Cijkl Eij + Bijkl O)ij

- _ enerclvfunction / - _ exist any body /2

V-
Aijkl = Aklij -_,ij= Y'ji = Oij

Oij = CFjld 8ij _ Aijkl = Ajikl

xij = Biju o)ij oij = Aijkl lakl

= Ciju e_d+ B ijmO&l

(BOX 2)

YES (BOX3)

Do there

existanybody (BOX4)
moments

? _ Aijkl = Cijkl1_) (Yij= Cijkl Ekl

Figure 2. Flow Chart of Constitutive Relationships
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The only way for either equations (14) or (15) to have a non-trivial solution for Pk is to
have the determinant of the bracketed terms equal to zero. This will give the equations of
both the slowness and velocity surfaces. Substituting back the velocity will then yield the
particle-motion polarization vector Pk -

When the slower and faster velocity sheets of the quasi-S waves meet, there can
exist singularities in terms of curvature of these sheets; this will produce fast variations on
the propagating wave surfaces (which propagate normal to the slowness surface, see
Appendix D), or group-velocity sheets (eg. cusps and holes) (Crampin and Yedlin, 1981).
This provides another area which has possibilities for further research, since present
studies are concentrated in ray modeling and graphical presentations, other techniques may
be brought to bear on this problem.

MACRO-ANISOTROPY

An assumption that is generally made (Crampin, 1981) is that "no analytical
distinction can be made between behavior of what might be called inherent anisotropy such
as aligned crystals ... and oriented two-phase materials when the seismic wavelengths are
sufficiently large ...". I (D.T.E.) feel that in geological situations mixtures of multiphase
and multicomponent materials are not restricted to standard symmetries in the same way as
crystals are by space filling and point group constraints, and may exhibit more general
forms of anisotropic symmetries in a statistical sense. It may be possible to generate
anisotropic macroscopic descriptions which describe waves propagating in random
heterogeneous material with statistical alignments. A sparse matrix technique may then be
employed to determine simple symmetrical representations of the constitutive relations in
such materials. This type of description has been made in materials with fine layering. The
resulting long-wavelenth description turns out to be transversely isotropic (Backus, 1962).
Though this is a satisfying analysis I find it difficult to generalize directly to the general
case mentioned above. Another approach is to treat the wavefield _ as propagating through
a random media then try to describe how the expected value <q/> and relevant moments

such as <Xlt(_l)_(_2)> propagates through the medium (Uscinski, 1977). A finite-difference
or finite-element modeling technique may also be employed to determine viability for
further analysis.

ELASTIC CONSTANTS AND VECTOR BOUQUETS

From a seismogram one can only easily deduce the traveltime surface F('fi')from

which one could calculate the group velocity V and if observations were dense enough the
direction _ of the group velocity. With this information in hand it is the possible to obtain

the phase velocity v(k) either through analytic techniques (Synge, 1957) or geometric
arguments (Helbig, 1990). With enough phase-velocity determinations one can then use
deterministic techniques (Backus, 1970) to determine the elastic constants or, in the case of
inaccuracies giving rise to inconsistent equations, an optimizing algorithm is preferable.
Even if there are no errors in one's velocities the possibility of not being oriented along
axes of symmetry is great; this will give rise to an elastic tensor with up to twenty one non-
zero coefficients. This makes it difficult to determine which symmetry system may be
represented. One method which allows one to determine this uses Maxwell multipole
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representation of the elastic tensor. The muhipoles can be seen as unique vector bouquets
which by direct inspection give the symmetry axes and symmetry group represented by the
paWxcular elastic tensor (Backus, 1970). With errors in the velocities the derived elastic

tensor _2ijklmay always tend towards a triclinic system. To counter this problem one could
use the vector bouquets of the symmetry systems as templates, and rotate them until the

difference between the vector bouquets of Cijkl and the template is minimized. Then one

constructs the tensor e_jklfrom the template tensor C_ijklas follows:

g_jkl = Cijkl-C_ijkl ,

where ot signifies the particular template used. One then calculates e_jklE_jklor some other
indicator of smallness. Some measure of randomness of the elements may also be
necessary to determine the best symmetry system which can be used to represent the
original elastic tensor. Since the purpose is to discriminate against the triclinic case it is
excluded from the discussion above.

APPROXIMATIONS

Approximations to specific anisotropic situations exist, such as elliptical anisotropy
for transversely isotropic cases (Daley and I-Iron, 1979) and Fourier truncations for general
anisotropic media (Crampin, 1981). Even though these approximations do not give the full
picture of wave propagation in anisotropic media, they do provide simplifications that allow
some understanding of underlying principles. This area has room for further investigation
into other forms of approximation and estimation of error introduced by the
approximations. This last point was partially addressed for elliptical anisotropy by Helbig
(1983).

TRAVELTIME

The traveltime problem in anisotropic media is well studied and has been subjected
to analysis by varying techniques; In this area I see little room for me to make a
contribution. There is one area which may be linked to this however; that is the
construction of an approximate Green's function from the techniques above. One very
interesting development in terms of field discontinuities (Vlaar, 1968) is very akin to the
discontinuous nature of the Green's problem.

ELASTODYNAMIC GREEN'S FUNCTION

The elastodynamic Green's function Gin is defined as the solution to the following
equation

(AijklGkn,l),j - pGin = -_in_(Xi-_i)_(t-'_) (16)

where: Aijkl - elastic tensor,

13_=density,
_in = Kroneker delta,
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and 8(t-z) = Dirac delta,

usually with homogeneous boundary conditions (e.g. free-space Green's function) (Aki
and Richards, 1980). This, at present, has no analytical form except for the case of
transverse isotropy (Ben-Menahem and Sena, 1990); therefore, this would be an interesting
topic to investigate. Ben-Menahem and Sena's (1990) analysis of the source function
showed the far field is more profoudly effected by the nearfield signature then the concavity
of the slowness surface. This analysis shows the usefulness of the Green's function in
studying wave propagation problems. The use of Green's functions in the solutions and
elucidation of boundary-value problems is well known (Stakgold, 1979) and the powerful
techniques available which use this (e.g. Born's approximation) makes the solution of
equation (16) a very desirable objective.

PLANE WAVES

Some work in plane-wave techniques for the decomposition of point sources into
plane-waves in anisotropic media is being done at present (Rommel, 1990), but is still very
much in the preliminary research stage. It would be interesting to see if the technique for
plane-wave decomposition introduced by Tygel and Hubral (1984) for representing the
Sommerfeld-Weyl integral may be brought to bear on this problem. The simplicity of the
phase velocity representation of plane waves should pay dividens when used in a modeling
scheme.

DISCRETE GRID TECHNIQUES

Another approach towards forward modeling is to find a numerically tractable
finite-difference or finite-element scheme that approximates equation (11) or (12). At
present, I have not read a paper on this approach. Another area of interest is to explore the
possibility of useing cellular automata concepts in this area.

CONCLUSION

Inversion in anisotropic media is really in its infancy at this time. There are many
techniques which can be tried including: generalized linear inversion, Born inversion, other

approximate inverse methods and (x-p) methods. We feel it is better thesis research strategy
to investigate fully the previously mentioned research areas: (i) basic theory (ii)
approximations for anisotropic situations, (iii) traveltime techniques (subject to the
reservations stated above) and (iv) wave-equation techniques. With a fh-m foundation in
these techniques, the anisotropic inverse problem, with its many intertwined andinteresting
complexities may then be faced.
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APPENDIX A

ISOTROPIC WAVES WITH ROTATION

Given the general form of an isotropic tensor of order four from
appendix B we can write:

mijkl = _,(_ij_kl) + _d(_ik_jl + _il_jk) + V(_ik_jl - _il_jk). (A-1 )

The form of the general constitutive relations will be of the form

ZiJ = Aijkl(Ekl+c0kl) (A-2)

where E,kl _ the symmetrical strain tensor
and (l)kl_ the antisymmetrical rotation tensor.

Substitution of (A-2) into (A-I) results in:

Eij = _,_ij0 + 2lJ,eij - 2vo)ij (A-3)

where 0 = Ekk-- the dilatation.

The equation of motion, ignoring body forces, is given by

P_Ji = _]ij,j (A-4)

where Ui = the usual displacement vector
and p_= the density.

Taking the spatial derivative of equation (A-3) gives

Y'ij,j= (_,_ij0)j + 2_ijj - 2v0)ij,j
= _,0,i + .Lt(Uijj + Uj.ij) - v(Ui,jj - Uj.ij)

= _,0,i + (_-v)Ui,jj + (_+v)0,i. (A-5)

Substitution of (A-5) into (A-4) results in:

pUi = (_,+ILt+V)0.i+ (I-t-v)Uijj, (A-6a)

which in vector notation is:
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_4. "_'2_

pU = (_.+,Lt+v)V0 + (I.t-v)V U (A-6b)

,,..m

Now we use the standard procedure and take the divergence (V.)of

equation (A-6b) to get:

but V.U=O

V.V.0 = V 0
--" _'2_.. -'2-" _. -'2

and V.VU=V V.U =V 0

therefore,

--.2

p0 = (k+2l.t)V 0 (A-7a)

Analogous to the method above, we can take the curl (Vx)of

equation (A-6b) and get

pVxu = (_,+lX+V)VxV.O + (I.t-v)VxV u

but VxV.O = 0
-- --'2_. -'2-* _. --2-.

and VxV U=V VxU=V _,

where I have let VxU =_,

therefore,

PV= (_-v)V_. (A-7b)

Equations (A-7a and A-7b) are wave equations in the standard forms
seen in seismological texts and are related to the propagation of P

and S waves respectively. The difference from the standard
equations is only in the S-wave velocity, where in the standard
development we have
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Vs= _ = '_-p_- '

while here the velocity becomes

us--_--_/5_. _-_a_
The P-wave velocity on the other hand remains the same and is of
the form

Vp=O_=_. (A-8b)
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APPENDIX B

ISOTROPIC/CUBIC TENSORS OF ORDER FOUR

For a rotation about the origin "O" from one frame of reference
(designated by O123) to another frame (designated as O1'2'3') an
arbitrary tensor will have the following relationship:

C'ij kl = lmilnjloklplCmnop (B-1 a)

where Cijld---- tenor of order four

and lmi---- direction cosines between the two frames.

If furthermore the tensor is isotropic (ie., same from any frame of
reference) then we would have the relation

C ijkl = lmilnjloklplCmnop = Cijkl (B- 1 b)

(Note: With suffices allowed to take on values of 1,2 and 3 only and
there being four suffices then at least one pair of the suffices must
be the same. Some possible forms are: 1111, 1112, 1122, 1123. )

Rotation about _ = (1]}t3,1]V3,1]_) (the vector from the origin to the

barrycenter) will bring about cyclic interchange of suffices as shown
in figure B-la and B-lb. This rotation plus equations (B-la and b)

implies cyclic permutation of suffices leaves the tensor unchanged, as
exemplified by relations (B-lc) below:

Clll 1 = C2222 m C3333, Clll 2 m C2223 m C3331, (B-lc)

Cn22 -- C2233 = C33n, Cl123 = C2231 -- C3312.

Now consider a ninety degree rotation along the 03 axis as in figure
B-2
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x2

1

2

3 1

x3 Figure B-la Figure B-lb

i

A x 1

x2

X2-'_ X1

/o
x3 Figure2

x3_'

This rotation will have two major consequences. First consider the
direction cosines

112= 1,112 = -1,112 = 1 ,
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all the rest will equal zero since for these

0ij = 90° _ Cos 0ij = 0 = lij.

Now consider the case where i=3 and j=k=l=l then from (1) we can
write

C3111 = lm31nllollplCmnop = -C3222

but by the same argument we can state

C3222 = C3111 '

which implies that

C3111 = -C3111 = O;

therefore, by cyclic permutation and ninety degree rotations about
the other two axes, all elements with 3 suffices equal will also be
zero

(i.e., Cijjj -- Cjijj -- Cjjij -- Cjjji = 0 V i_j=1,2,3 ).

By the same arguments above we can consider the case where i=3,
j=k=l and 1=2 giving the following

C3112 = -C3221,
but

C3221 = C3112 _ C3112 = -C31a2 = 0,

again by cyclic permutation and ninety-degree rotation about the
other two axes. This would imply that all elements with two suffices
equal and the other two different are zero.

(i.e. Cijjk = Cjijk = Cjjik = Cjijk = 0 V i_j_k = 1,2,3.)

Now let us look at some non-zero consequences of these rotations.
Consider the following:
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i=j=l, k=l=2 & m=n=2, o=p=l > Cl122 = C2211 ,

i=k=2, j=l=3 & m=o=l, n=p=3 '., C2323 = C2211 ,

i=1=1, j=k=2 & m=p=2, n=o=l > C1221 = C2112 ,

i=j=k=l=l & m=n=o=p=2 y Cl111 = C2222.

The upshot of all this is that the only non-zero elements must have
either all suffices equal or equal in pairs. Armed with this and using
cyclic permutations we can write:

Clal1 = C2222 = C3333 =

Cl122 = C2211 = C2233 = C3322 = C3311 = Cl133 =

C2323 = C1313 = C3131 = C2121 = C1212 = C3232 = _.L,

C1221 = C2112 = C2332 = C3223 = C3113 = C1331 =

Using the Kroneker delta the above relations can be written in the
compact form

Equation (B-2) is the form taken by a tensor with cubic symmetry.

To see that this is not isotropic, consider four arbitrary tensors

wi,xj,Yk and Zig then form the tensor product

CijklWiXjYkZ 1 = _(WiXiYkZk) + _(wiYiXjZj) + V(WiZiYjXj)

+ (K-_-_-V)(XlYlZIW1 + x2Y2Z2W2+ x3Y3Z3W3).

Note that the first three terms on the right-hand side are scalars
while the last term depends on the selection of the four arbitrary
tensors and only has cubic symmetry. To see that this is indeed true

we let wi=yi=zj=xj; then the last term will have the form

o_(x 4 + x4 + x34) where we have allowed _=_-_-_-'_. Now let
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xl = x2 = x3 = 1/lf3 this would imply x 4 + x4 + x 4 = 1/3, but by a simple
rotation we change the form of the vector to xt = 1, x2 = x3 = 0 then

x 4 + x 4 + x 4 = 1. Therefore, for the fourth-order tensor to be isotropic
we must have:

=_:-2-_-_=o

Substituting this into equation (B-2) results in:

cij_=;.(_ij_kl)+_(_ik_jl)+,7(8i15j_)(B-3_

which upon substitution of _, = _, I.t + v = g and ]x - v = 7g results in:

Cijkl ----_(SijSkl) + _l_(SikSjl "t- 5ilSjk ) "F V(SikSjl - 5ilSjk) . (B-4a)

If the anti-symmetric term is neglected then:

Cijkl---- _(SijSkl ) -t- g(SikSjl -I- 5ilSjk ) (B-4b)

which is the form most commonly seen in elastic wave theory.
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APPENDIX C

MOMENT OF INERTIA
AND THE SYMMETRY OF STRESS

We will begin with Newton's second law applied to a volume "V" bounded by a
surface "S", as indicated in figure C-1.

x2

S

• xl

Figure C-1

This will give rise to the following integral equation,

_ Fi0dv+l'.ijnj d_--_ PUidv (c-o
where:

Fi -=body forces,

p _- mass density,

_ij -=-total stress,

nj =- unit normal to surface element ds

and Ui -_ displacementvector.

We now apply Gauss's theorem to the surface integral and rearrange terms to get

fv [(Fi + Ui)p + dv = 0
_ij,j]

, (c-2)
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since the volume "V" is arbitrary the integrand must be zero, as shown below

(Fi + Ui)p + _ij,j = 0 (C-3)

Armed with equation (C-3) we proceed to look at the moments about the origin;

_v EijkXjFkp dv + I 13ijkXjY_klnlds + _v Mjp dv = I D£ijkXj!Jk dv , (c-4)
where;

eijk ------permutation symbol,

xj -= position vector

and Mj -_ some possible body moment per unit mass.

Useing Gauss's theorem we can rewrite the surface integral in equation (C-4) as

I £ijkXj_klnl ds = I Eijkl[Xj,i]Ekl + Xj_kl,I] dv (c-5)

Now by substitution of equation (C-5) into equation (C-4) and regrouping terms we get

l Eijk_kj + Sip = [ EijklXj[._kl,1+ p(Fk- =

dv Uk)] dv 0
A (C-6)

By direct comparison of Equation (C-3) to the second integrand in equation (C-6) we can
set the second integral to zero, and since the volume "V" is arbitrary we can set the
integrand of the first integral to zero giving

EijkEj k = Mip, (C-7)

and if we have no body moments (refer to Appendix E) then (C-7) becomes

EijkEkj = 0
or

Zkj = Y-'jk= Ojk. (C-9)
Thus in the absence of body moments we must require

Aijkl = Ajikl. (C-I0)
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APPENDIX D

ENERGY PROPAGATION IN
ANISOTROPIC MEDIA

This section will be dealing with the propagation of energy in an anisotropic
medium. The path traced out along the wavefront as the energy propagates defines the ray
path. Even though the existance of a strain energy function q_, as defined below is not
proven, it has proven to be such a useful mathematical tool it behooves us to define it with
the following property:

-_,ij = °3(I)
Ol'tiJ" (D-1)

Expanding the strain energy function about an equilibrium point 0 in a Taylor series gives:

-- "l _'lijl'lkl + ...-

LOgij]0 ZLOglJOgklJ0 (D-2)

Since we have defined 0 to be an equilibrium point then the first derivative with respect to
strain must be zero, as shown below:

:0.0
This implies

(i)_(i)(0)=l__ _2(I)] i.tij_kl +O(g_j)-

zLcql'tiJ()t'tklJ0 (D-3)

Now we make the assumption that the system in the equilibrium configuration has zero
energy (though not absolutely necessary), and noteing that equation (D-l) gives us:

= Aijkl

0t'tij01"tkl , (D-4)

allows equation (D-3) to be written in the form:

all) = ½AijklLl.ij_.lkl + O(_l.3j) . (D-S)

We now drop all terms of order three and higher and substitute the stress strain relation of
equation (4a) into equation (D-5) to get:



321

(1)= ½hijklBij_kl= 1 ....2ZUI'I"IJ' (D-6)

which is an expression of the potential energy stored in the elastic field. The expression for
kenetic energy density has the form:

W = 2_PlJilJi ; (D

With the expression of potential and kenetic energy in hand we proceed to write down the
expression for total energy in a volume V as:

E = f (W+qb) dv
L (D-8)

We can then write the expression of the change in energy with time in the volume as:

dE = f _W + _cI) ( + I.Lijdv,

dt Jv ('-_- -'_-') dv Jv POi_)i _(I) ._Bij
(D-9)

but

-- = Xij & _ij = Uid ;

_P.ij (D-10)

therefore,

I _-- dv = _v _ijl_li,j dv = f_ (Yqjl_li)'j - _JiYqj,j dv

(D-11)

Substitution of equation (1)-11)into (D-9) results in:

dE =_ l_Ii(P_)i _ _ij,j) dv + _ _ijOinj dsdt .Iv Js (D-12)

From equation (1) we can see that, if body forces are ignored, the integrand of the volume
integral is identicallyzero, leaving us with:

dE = I Eijl_linj ds =- I Fjnj dsdt (D-13)



322

The physical significance of equations 03-12) and (19-13) is that the rate of change of
energy in a volume V is equal to the flux of the vector F through the enclosing surface S;
this prompts us to demine F as the energy-density flux vector:

Fj = -]EijlJ i (D- 14)

We will now use the definition of a plane wave given by equation (13) to study the
energy propagation problem. Since we am now dealing with energy we need to consider
the real part of displacement only, namely:

(Uk + Uk)/2. (D- 1 5)

Substitution of equation 03-15) into the energy flux density equation 03-14) results in:

Fi=-Zij(0j+ Uj)/2=-_Aijkl(Uk.l+ Uk,l)(lJj+ _j)

= _-Aijkl[(Uk.IUj+ Vk.ll_lj)+ (Uk,II)j+ Uk,IUj)] (D-16)

Note that the first term in parenthesis has no complex exponential dependence while the
second does. The oscillatory nature of the complex exponential causes it to average out to
zero over a span of time long in comparison to its period. Useing this fact we will develope
a better idea of how energy propagates by averaging equation (I)-16) as follows:

lit'_i = Fi dt = -1Aijkl(Uk,l_ j + Uk,l_.lj)
1 (D-17)

We shall now substitute equation (13) inot equation 03-17) to get

-1Aijkl(-pjPkSl+ pjPkSl), (D-1 8a)

and if and are real, as if commonly assumed, equation (D-18) takes the special form:

¼AijklPjPkSl. (D- 1 8b)

We now have the necessary machinery to draw a connection between the averaged energy
flux density vector and the normal to the slowness surface.

The slowness surface as discussed in relation to equation (14) will have the
following form:

= det[Sik] = det[AijklSjSl- P_ik] ----0 (D- 1 9)

Letting Cik be the cofactor of element Sik in equation (D-19), allows us to write the
following relationship:
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CikSil = 5Vaf_ = 0; (D-20)

this comes from the definition of cofactor expansion of a determinant. The plane wave
equation (14) can also be written as:

SikPk = 0 = SikPi. (D-21)

By direct comparison of equation 03-21) and 03-20) we can come to the conclusion that:

Cik= Cik= fPiPk, (D-22)

where f is some constant. We now proceed to calculate the gradient of the slowness surface
which is the normal to the surface which will have the form:

3f_
= Cik _Sik = CikAijklS1

_sj _sj (D-23)

Substitution of equation 03-22) into equation 03-23) yields:

= fAijklpiPkSl

_sj (D-24a)

or o. AijklPiPkSl " (D-24b)
3sj

By makeing a direct comparison of equations (D-24a and b) to equation 03-1 8b), we would
f'md that they are identical up to a multiplicative constant, which represented symbolically
is:

(D-25)
_Si "

Note the constant of proportionality is constant for all components. The physical
significance of equation 03-25) is that energy flows in the direction normal to the slowness
surface.
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APPENDIX E

SHEAR WAVES AND BODY MOMENTS

The existence of shear waves suggests that the wavefield is in general is not
irrotafional in an elastic medium. This can be easily demonstrated by a simple closed circuit
integration of particle motion in the presence of plane S-waves for instance. We can use the
formula:

¢bi= eijkI)J,k , (E- 1)

where COi ------the rotation vector,

eijk ---the permutation symbol,

and Ui _- thedisplacementvector,

this provides a description of local infinitesimal angular velocity, and is in general not zero.

Consider the following relationship in a small volume AV,

ALi = AIi 0(i) (no sum on i) (E-2)

where ALi---angularmomentum,

AIi _ moment of inertia,

and 0 ---angularvelocity.

We have from the above discussion an expression for angular velocity therefore
substituting equation (E-I) into (E-2) yields:

ALi = AI(i)eijklJj,k . (E-3)

Now we can write:
/,

AIi= / r2p
Jv (E-4)

where r =-radius in a plane perpendicular to the axis xi,

and p -=density.

If we further allow: Mk2 = AIi = I r2p dv (E-5)

suchthat M_-totalmassin V,
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and k _-radiusofgyration.

The density distribution will greatly influence the integral (E-5), specially if there are
distributed hard cores in the volume. If we assume that the density is constant in the

volume AV we can write M = pAV and

Mk2 = Ply r2 dv

r2dvtherefore k2 = (E- 6)
AV

In a strict continuum equation (E-6) will tend toward zero; however, in the small scale this
may be a poor representation and thus the possibility of equation (E-6) not being zero aries
(probably quite small). Then we can write:

ALl _ pk2eijkl[lj,k
AV , (E-7)

which is a body moment density.


