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ABSTRACT

Following the first principle procedure outlined by Buchen (1971a) and
Borcherdt (1973), we describe the derivation of SH wave propagation in a
homogeneous transversely isotropic linear viscoelastic (HTILV) solid. Plane SH wave
propagates with frequency-dependent complex phase velocity

fl2(o_) = f12((.0) sin2b + fl_(to) cos2b

where flh and flv are complex shear wave velocities perpendicular and parallel to
the axis of symmetry of the medium and b is a complex angle that the complex
wavevector makes with the axis. The energy flows in a direction governed by the
propagation vector, attenuation vector and the rigidities. The attenuation angle between
the propagation vector and the attenuation vector can be uniquely determined by the
complex ray parameter at the saddle point of the complex traveltime function. Complex
ray can be traced between source and receiver locations with intermediate coordinates
being complex. By means of the method of steepest descent, the wavenumber integral
representing the exact SH wave field generated by a line source for layered-case
problem can be approximated to give complex ray amplitudes for reflected and
transmitted body waves. The factor accounting for cylindrical divergence is similar in
form to that of the isotropic case. However, the similarity is not so obvious without
going through the mathematics.

For a simple two half-spaces model, the complex ray result agrees well with the

og-k solution in regions away from the critical area. For pure SH mode propagation
through a planar HTILV structure with 20% anisotropy, the reflected amplitudes in
both cases (transversely isotropic and isotropic) look similar. However, the most
significant is the kinematic difference.

INTRODUCTION

It is common observation that seismic waves propagating through the earth
experience attenuation and dispersion. Besides anelasticity, anisotropy is an intrinsic
property of the uppermost mantle accounting for the discrepancy of the Love- and
Rayleigh-wave data (Anderson, 1989). Depending on the nature of anisotropy of the
medium, the characteristics of seismic waves would be modified significantly and
shear-waves splitting might occur (Tatham and McCormack, 1991).

* to be submittedto GeophysicalJournalInternational.
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A laminated solid appears to be transversely isotropic for waves whose
wavelength is large compared to the layer thicknesses. Medium with transverse
isotropy is very common in many sedimentary basins where layers of sand and shale
are alternately deposited with thicknesses being small compared to the probing seismic
wavelength. Previous works (i.e, De Segonzac and Laherrere, 1959) indicate that
computation using either vertical velocities from sonic measurements or horizontal
velocities from refraction surveys tend to give an underestimated or overestimated
velocity-versus-depth model. Le (1992) has recently studied the case of SH wave
propagating in two transversely isotropic half-spaces and found that the effect on
seismic waves is not negligible.

In this paper, we extend the study of SH wave propagating in
transversely isotropic and elastic medium by Sato and Lapwood (1968) to transversely
isotropic linear viscoelastic medium in the framework of inhomogeneous wave theory
(Buchen, 1971a; Borcherdt, 1973; Krebes and I-Iron, 1980). Daley and Hron (1979)
studied the elastic case for a point source using asymptotic ray theory. Here, we focus
on a simpler case of a line source. The purpose of this paper is twofold: (1) to provide
a theoretical description of the solution and (2) to demonstrate the accuracy of the
complex ray method for simple half-space model.

SH WAVES IN TRANSVERSELY ISOTROPIC LINEAR
VISCOELASTIC MEDIA

The governing equation for the propagation of SH waves in a homogeneous
transversely isotropic linear viscoelastic (HTILV) free space is

_Zu _zyx , _yz

P 3t2=- bx bz (1)

where u is the displacement with the corresponding Hooke's law :

"_yx= N(t)* d( ou ] and _yz= L(t)* d(-_z )_x] (2)

where N and L are the elastic constants which are time-dependent, the (*) denotes the
convolution operation

f* dg = __t_. f (t- z) g(z) dz
(3)

and the dot refers to the derivative with respect to the argument. In eq. (I), we have
essentially assumed that SH wave particle motion is linear and in they-direction. This
is acceptable since it has been shown to be true for both a HILV medium (Borcherdt,
1977) and an elastic TI medium (Sato and Lapwood, 1968) separately. We could also
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have demonstrated it direcdy by generalizing the approach of Sato and Lapwood to a
LV medium by replacing their products with convolutions [as in eq. (2)].

Substituting eq. (2) into (1) gives

P _t2 __x2 ) __z2 ] (4)

in Cartesian coordinates. Taking Fourier transform, we get

-p _o2_=E,(_) +E(co)
3x 2 3z2 (5)

where

E(c0) =I._._ u exp(-io)t)dt
(6)

F
E(co)=i CO| N(t) exp(- i cot) dt

Jo (7)

and

= i col L(t) exp(- i cot) dt
.1o (8)

Consider a plane wave solution of the form

= exp(- i _'. 7) = exp [- i (kx x + kz z)] (9)

where the wavevector/_ is complex. By inserting equation (9) into (5), we obtain the
dispersion relation

p _2 = N(a)) k2 + L"(a_)k2 . (10)

If we denote
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tanb =kx (11)
kz

where b is a complex angle that /_ makes with the vertical axis of symmetry of the
medium (see Heam and Krebes, 1990 and Figure 1A ), the complex phase velocity is
given by

fl2(b) = fO2 =/V sin2b + L'cos2b
K 2 P (12)

or

,-,2 . 2" ,-,2
fl2(b) = Ph sm O+ Pv cos2b (13)

where the complex horizontal and vertical phase velocities, flh and fly are respectively :

(14)

Note that if the medium is elastic then/_(¢o) = N and L'(o)) = L where N and L are
constant. If we further write

E=,g-iX (15)

then

K2= _ . g= o)2 =p2_ A2_2i-_ .

f12 (16)

where

P" •/_= PA cos 7 (17)

is the (real) phase vector perpendicular to the planes of constant phase defined by

fi" • E= constant, /_ is the (real) attenuation vector perpendicular to the planes of

constant amplitude defined by/_ • E = constant and 7 is the attenuation angle between

fi* and ,_ (see Figure 1B). Then, for a wave traveling in the positive x and z
directions,

fi"= Re (kx) _ + Re (kz) _" , (18)
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A"= - Im (kx)"x- Im (kz) z" (19)

and

tan O= Px (20)
Pz

where } and _ are the real unit Cartesian vectors in the x- and z-directions, Re(...) and

Im(...) are the real and imaginary parts of a complex quantity and 0 is the real angle that

makes with the vertical axis (Figure 1A and B). The complex ray parameter, p is
given by

kx _ Px - i Ax _ sin bp=

co o_ fl (21)

The components of the complex wave vector K are given in terms ofp as:

Ph /1 p2
k, = (.op and kz = co _-u ..V E - (22)

Hence, if the frequency-dependent phase velocities, flh and flv and a value of p are

given, the phase vector, P" and the attenuation vector,/_ can be obtained via (22).

Here we compute the energy flux for SH wave in HTILV solid. Consider a SH
plane wave propagating in the x-z plane with displacement

u= D exp i o_t-K. (23)

where D is a complex constant. The energy propagates in a direction specified by the
energy flux vector

(_)=( --( ('Exy)R (h)R ), O,--(('Ezy)R (U)R ) ) (24)

= 1 (.old I2e-2A' ; [Re(NKx),O, Re('LKz)]

= lco[D[2 e -2_'' z [(NRPx+NIAx),O,('LRPz+'LIAz)] (25)

where the subscripts, R or I denote the real or imaginary part of a complex quantity
and (...) denotes the time average. In the HTILV solid, the energy propagates along

a direction which is neither P nor ,_ , just as for a HILV solid. In the absence of
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anelasticity of the medium (N and L are constant) and for the case of body waves,

= 0 and eq. (25) reduces to

(1)= 20)[D_[N Px,O, LPz]

= Io)IDI2[N Ksin O,O, LKcos 0 ]

=l po)2lD_[ fl2sin O,O, fl2cos O ]fl fl (26)

where equations ((7), (8), (12), (14), (15) and (20) are employed and t, flh and fly are
independent of frequency. The elastic ray velocity V is related to the elastic phase
velocity fl by

fl( O) = V(dp) cos ( _ -/9) (27)

where _ is the ray angle which the ray makes with the z-axis (see Figure 1A and Byun,
1984) or

2
flVcos¢=flvCOS0 and flVsin_=flh 2sin0 (28)

(Sato and Lapwood, 1968). By substituting (28) into (26), we obtain

(7)= l Pm2[D_[ V sin _, O,V c°s 0] (29)

Thus, the disturbance propagates along the ray direction with a ray velocity V in the
elastic T1 solid (Sato and Lapwood, 1968).

COMPLEX RAY TRACING IN MEDIUM WITH ELLIPTICAL
VELOCITY DEPENDENCY

For a harmonic plane wave

exp {i co [t- T(o))]} (30)

traveling a displacement E from the origin to (x, z) in a homogeneous medium (see
Figure 1A), the complex tmveltime function is
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T (p) - K" " _ -- px + _h A t_-- p2 Z
(31)

For a stack of flat homogeneous linear viscoelastic layers with elliptical velocity
dependency, the complex traveltime function can be generalized as

rn !_) m (j_h)J _l_

T_p)=Z -_=px+E _p2hj (32)

where m is the number of ray segments,, h'j is the thickness.... of the layer which the jth
ray segment traverses, etc., and X is the total offset (Figure 2). Since the quantmes,

p, 13h and/3v are complex and dependent on frequency, Re(T) is the actual travel time
of ray and Im(T) is associated with absorption.

Since the traveltime function T (p) is determined ifp is obtained, the unique
valueps ofp for a given ray can be achieved by finding the stationary travel path, i.e.,
Ps is obtained from

dT(p) p=p,= 0dp (33)

or

m

x: E h p,( h)j
i--1(pv)__/-_)j -:, (34)

This method has been called the stationary ray method and the ray the stationary ray
satisfying Fermat's principle of least time (Heam and Krebes, 1990).

If we define the angle _j by

sin _j

P= (_h)j ' j= l ..... m (35)

then (34) becomes

X = _ (_h)j

(36)
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where

xj

tan(_s)j=(flh) j (37)

and (_s)j = [_(Ps)_' is a complex auxiliary angle (see Figure 1A). Although each term
in the sums in (34) or (36) is complex, the sum X is a real number. Substituting
Equations (35) and (36) into (32) yields

T (t9)=j= (flv flh 1 p2s .=

(fl_)J (38)

isacom lexs et,e,. leng .where sj = 4 1fl2vjj

For a given ray, Ps is obtained by solving eq. (34), given [fib(c-o)} and

[flv(CO)} (or ?_(¢o) and _(co) ). Another approach would be to use the (real) phase
velocities of homogeneous waves in the horizontal and vertical directions, [Ch(O))) and
[cv(Co)]j , and the Q-values in the horizontal and vertical directions, [Qh(O))_ and

[Qv(co)]j as the given input values (see, e.g., Heam and Krebes, 1990). In that case,

(flh)j can be obtained from

1_1 I l
([3h_j (ch_j l l + _/[1 +(Qh)9]I (39)

with a similar equation holding for (flv)j (with "h" replaced by "v"), and where

lm(/Vj) Im(Lj)

(Qh)Jl - Re(Nj) and (Q_)j-1- _ . (40)

RAY AMPLITUDES

The displacement due to an impinging SH ray of m segments from a line source
passing through a sequence of fiat HTILV layers (Figure 2) is (generalized from the
elastic TI two half-spaces solution, Le, 1992 and using the elastic- viscoelastic
correspondence principle), without a constant factor,
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I F(c°)S(C°)ei°Jtdw (41)U =

J. ipl(_v_

where

I.-_ _t _ t m /1
F(o))= ex -4(.0 _ vjhj+pX dp , (42)

=1

vj=(flh)J /" 1 p2 _ cos_j (43)
(_v)j_/(ph_ (pv)j'

S(co) is the spectrum of the source function and Y is the product of anelastic and

transversely isotropic generalized reflection coefficients 9t and transmission coefficients

F (Spencer, 1960; Krebes, 1984; Le, 1992):

Y =l--I 91j-l,j I"l-t,l (44)
j,l

_-1_-1-_ 2_._tv__x
91j-l,j -: and I'j_l, j

Lj_,__t+_ __,v__t+_v_ (45)

For large and positive o_,the exact p--integral, F(og) can be approximated by the
method of steepest descent (Brekhovskikh, 1980):

F(co) =,a/_ Y(Ps) exp[ -i coT(ps)] (46)
vio)T"(ps) Vl (ps)

where T(p) is given by (38) and the second derivative of T(p) is

m h_(_h_

T "(P)=-J--_'l (_v)jC°S3_j (47)

via (43). In obtaining eq. (46), we did not examine in detail the geometry of the p-
plane, i.e., the location of the saddle point with respect to the branch cuts, how these

vary with the medium parameters, etc. This is because we are interested here only.in
reflected and transmitted body waves, whose amplitudes are given by the saddle point
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contribution to the integral. The form of this contribution seems to be essentially
independent of the above-mentioned details (see, e.g., Buchen, 1971b; Aki and
Richards, 1980).

By substitution, we have

,(_) exp(i{ +og[t-T(ps)]})dco(48)
co LS i p l (fl_l3_-

where the cylindrical geomeU'ical spreading Ls is

Ls = (_v)l (fib): j=, (flv)j cos 3(_s)j (49)

In the case that the medium is homogeneous( meaning m = 1) and isotropic, the
spreading factorLs reduces to ltt_-ngth of the ray as desired.

In eq. (48), a "high frequency" source pulse spectrum S(w) should be used,
since eq. (46) is a high frequency approximation. Also, the signs of the complex

vertical slownesses vj must be chosen correctly (see Richards, 1984; Krebes, 1984).

DISCUSSION OF THE NUMERICAL RESULTS

In this section, we compare synthetic seismograms generated by eq. (41),

evaluated by the c0-k method of Abramovici et al. (1990), with those generated by the
stationary ray method (eq. 48).

The source pulse we use is that of Abramovici et al. (1990), i.e., the time
derivative of a delayed Gaussian function. The spectrum of this pulse is given by

zr ex_l_ co2_i cotd )S( co) i (1)
va }'_ 4o" (50)

where a = 5 x 10 4, the dominant radial frequency cot= _ -- 27r x 50 Hz, and the
time delay td = q_27a makes the pulse essentially causal.

The intrinsic absorption law we implemented is also that used by
Abramovici et al. (1990), i.e., Azimi's law (Azimi et al., 1968; Aki and Richards,
1980), e.g.,

]__!_inL + _._L_"
]_h(0)) = J_hr [1 +/_h (f_rr)2Qh] (51)
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with a similar equation for fly • The reference frequency fr = 0.1 Hz. The velocity _hr

is found by assuming that R_ flh(O_)] approaches the model velocity at f = 250 Hz.
Below the reference frequency, there is no dispersion, the elastic velocity being

replaced by flhr (1 + i / 2Qh) .

The medium model consists of two half spaces, with the source and receivers in
the upper-space at a distance of 0.5 km above the interface. Using the subscript 1(2) to
refer to the upper (lower) half-space, the densities are Pl = 1.5 g/cm3 and P2 = 2.0

g/cm3, the model velocities for the isotropic case are fll = 1.0 km/s and f12 = 2.0 km/s,
and the Q values are Q1 = 50 and (22= 100. For the case of transverse isotropy, we

use flh fly = 1.2 for the model velocity ratio in each half-space, with fly being the
model velocity for the isotropic case. Q-anisotropy was not considered, i.e., Qh = Q_

=-a.

Figures 3 and 4 show the synthetic seismograms for the anelastic isotropic and

anelastic anisotropic cases. The head wave, which can be easily seen on the o)-k traces,

is not computed in the stationary ray code. As expected, the o)-k and the stationary ray
method agree quite well in the subcritical zone, disagree completely in the critical zone
(a small range about the critical distance) due to the absence of the head wave in the ray
method and the inaccuracy of ray theory in the critical zone, and agree fairly well in the
supercritial zone. As expected, the waves in the anisotropic case arrive before those in
the isotropic case, and this traveltime difference increases with offset, due to the higher
horizontal velocity in the anisotropic case. Figure 5 shows the ray-synthetic results for

the model given in TABLE 1 with flv being the model velocity for the isotropic case.
Again, Q-anisotropy is not considered. Four reflected events are displayed in four
different windows for comparison purpose. The reflected amplitudes in both cases

/9 _v _h Q h

(_/cm 3) (km/s) (kin/s) (kin)

2.0 1.80 2.16 40 _,

2.1 2.30 2.76 50 1.0

2.2 3.00 3.60 60 1.0

2.3 4.00 4.80 70 1.5

2.4 4.80 5.76 80

TABLE 1 : The TI model with flh/flv = 1.2. The line source and the receivers are
located in the upper half-space at a distance of 0.5 km above the first interface.
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(transversely isotropic versus isotropic ) are not much different, especially the later
events. The reflection coefficients seem to be insensitive to the underlying anisotropy
as discussed by Schoenberg and Costa (1991). However, the difference in arrival
times is the most striking

CONCLUSION

A complete description of SH wave propagation in HTILV medium has been
presented. The energy propagates along a direction dictated by the real phase vector,
real attenuation vector and the real and imaginary part of the rigidities. The stationary
ray can be traced through a sequence of HTILV layers by computing the saddle point
value of the ray parameter. Full wave solution can be obtained by calculating the
double integral given by equations (41) and (42). For body waves, the double integral
can be approximately reduced to a single integral of (48) by means of the method of
steepest descent.

For a simple model of two half-spaces, results computed by the two methods

(the ¢o-k and the stationary ray method) compare well in the subcritical and the
supercritical zones. For the multi-layered structure that we considered, transverse
anisotropy does not seem to modify the reflection coefficients significantly; rather, the
most obvious difference is the early arrival of the reflected events as compared to the
isotropic results.

ACKNOWLEDGMENTS

This research was supported by the sponsors of the Consortium for Research in
Elastic Wave Exploration Seismology (the CREWES project). We would like to thank
Drs. Robert Stewart and Don Lawton for encouragement. G.E.G. wishes to express
his gratitude to the Mexican funding authority, CONACYT for financial support.

REFERENCES

Aki, K., and P. G. Richards (1980). Quantitative seismology, W. H. Freeman and Company, San
Francisco.

Anderson, D. L. (1989). Theory of the Earth, Blackwell Scientific Publications, Chapter 14.
Azimi S. A., Kalinin A.V., Kalinin V. V. and Pivovarov (1968). Impulse and transient characteristics

of media with linear and quadratic absorption laws. Izvestiya, Physics of the Solid Earth 2,
88-93.

Borcherdt, R. D. (1977). Reflection and refraction of type - II S waves in elastic and anelastic media,
Bull. Seism. Soc. Am. 67, 43-67.

Borcherdt, R. D. (1973). Energy and plane waves in linear viscoelastic media, J. Geophys. Res. 78,
2442-2453.

Buchen, P. W. (1971a). Plane waves in linear viscoelastic media, Geophys. J. R. Astr. Soc. 23,531-
542.

Buchen, P. W. (1971b). Reflection, transmission and diffraction of SH-waves in linear viscoelastic
solids, Geophys. J. R. Astr. Soc. 25, 97-113.

Brekhovskikh, L. M. (1980). Waves in layered media, Academic Press, New York.
Byun, B. S. (1984). Seismic parameters for transversely isotropic media, Geophysics 49, 1908 -

1914.

22-12 CREWES Research RePort Volume4 (1992)



Synthetic Seismoqrams in Anelastic Transversely Isotropic Media

Daley, P. F., and F. Flron (1980). SH waves in layered transversely isotropic media - an asymptotic
expansion approach, Bull. Seism. Soc. Am. 69, 689-711.

De Segonzac, P. D., and J. Laherrere (1959). Application of the continuous velocity log to anisotropy
measurements in Northern Sahara; results and consequences, Geophy. Prosp. 7, 202-217.

Hearn, D. J., and E. S. Krebes (1990). On computing ray-synthetic seismograms for anelastic media
using complex rays, Geophysics 55, 422-432.

Krebes, E. S. (1984). On the reflection and transmission of viscoelastic waves - some numerical
results, Geophysics 49, 1374-1380.

K.rebes, E. S., and F. I-Iron (1980). Ray -synthetic seismograms for SH waves in anelastic media, Bull.
Seism. Soc. Am. 70, 29-46.

Le, L. H. T. (1992). On Cagniard's problem for an qSH line source in transversely-isotropic media,
submitted to Bull. Seism. Soc. Am..

Richards, P. G. (1980). On wavefronts and interfaces in anelastic media, Bull. Seism. Soc. Am. 74,
2157-2165.

Sato, R., and E. R. Lapwood (1968). SH waves in transversely isotropic medium - I, Geophys J. R.
astr. Soc. 14, 463-470.

Spencer, T. W. (1960). The method of generalized reflection and transmission coefficients, Geophysics
25, 625-641.

Schoenberg, M., and J. Costa (1991). The insensitivity of reflected SH waves to anisotropy in an
underlying layered medium, Geophy. Prosp. 39, 985-1003.

Tatham, R. H., and M. D. McCormack (1991). Multicomponent seismology in petroleum exploration,
Society of exploration geophysicists, Chapter 2.

CREWES Research Rel_ort Volume 4 (1992) 22-13



Le, Krebes, and Quiroga-Goode

Z

(B)

Z

Figure 1. (A) A schematic diagram showing the phase vector, P, E, /9, _, _ and a ray

for an elastic transversely isotropic whole space. Here we assume fly < fib..The

elliptical wavefront will approach the circular wavefront when fly -9 fih or the medium

is more isotropic. In the case that the medium is anelastic, P is replaced by R" and 0

is replaced by b. (B) A diagram showing the phase vector, P, the attenuation vector,

,,_ and the attenuation angle, 7 in the anelastic case.
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Figure 2. A ray of m segments.
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Figure 3. Synthetic seismograms for the medium model in the anelastic isotropic case
(see text for model parameters). The solid line traces are computed by the co-kmethod,
and the dashed line traces by the stationary ray method.
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Figure 4. Synthetic seismograms for the medium model in the anelasfic anisotropic case

(see the text for model parameters). The solid line traces are computed by the co-k
method, and the dashed line traces by the stationary ray method.
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Figure 5. Ray-synthetic seismograms for the model in TABLE 1. Four reflection
events, displayed in different time windows for comparison. The solid line traces are
for the isotropic model and the dashed line traces for the TI model.
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