
Rationalizingvaryingseismicdataformats

Rationalizing varying seismic data formats

Henry C. Bland

ABSTRACT

Inconsistent seismic data formats are a significant source of frustration to
geophysical processors. Since field data are acquired in one format, stored onto field
tapes in another format, and then processed in one or more formats, the probability of
making mistakes is great. The SEG has attempted to standardize the data formats by
publishing data format recommendations, but these recommendations are not always
followed. The cause of data format problems is often due to poor understanding of
data format issues and a lack of consistent nomenclature. Many developers of seismic
processing software choose to ignore the SEG standards because adherence increases
development time, and can affect the software's speed.

This paper proposes some nomenclature to aid in the discussion of seismic
data formats. Some of the common problems in dealing are illustrated using the SEG-
Y standard as an example. A conversion function library is proposed to solve the
problem of binary format translation.

NOMENCLATURE

To begin the discussion on nomenclature we will define two terms:

Binary format: The way a vector of data samples are encoded into binary form for
storage in a digital computer.

Data format: A generic term referring to the format of an entire data tape or data file.

The nomenclature that is presented will apply to binary formats only. To
understand the different kinds of binary formats, it is helpful to consider the
parameters which define the way data samples are stored. The term "data type" is
commonly considered as one of the built-in storage types available in common
computer languages such as C or Fortran:

Table 1. Data types available in common programming languages

C Data types Fortran DataTypes
short int integer*2
int integer*4
float real

double double precision

The C and FORTRAN data types are a useful start in defining how data
samples are stored. It is necessary use terminology that is less generic since the

CREWESResearchReport Volume5(1993) 10-1



Bland

number of bits allocated is implementation dependent. For example, the following C
data types produce different sized results depending on the hardware and operating
system:

Table 2. Bit sizes of C data types on various platforms

Data Type Intel Sun Sparc DEC Alpha
80386 SUNOS OSF/1

MS-DOS
shortint 16 16 16
int 16 32 32

long 32 32 64

It is therefore useful to specify not only the type of data (real or integer) but
also the size of the storage area in bits.

Generic data type: The number type (integer or floating point) as well as the total
number of bits required to store a value.

Not all floating point data types with the same total number of bits are the
same. Consider the IBM 370 and the IEEE 32-bit floating point encoding schemes.
IBM 370 floating point numbers are implemented by breaking the number into two
parts: a fractional part F, and an exponent part E. Any floating point number, x, is
computed by:

x = F x 16 E-64 (1)

The IBM 370 encoding scheme stores F using 24 bits and E using 7 bits. A sign bit S
is stored in the top bit of the total 32 bit word:

I Bit Number ]

=l°l. l. l l. l. l. l .l."l l°l -I l lel- l- l- l-"l:l°lolJJololJolJJol
ISIEIEIEIEIEIEIEIFIFIFIFIF IFIFIF IF IFIF IFIFIFIFIF IF IFIFIFIF IF IF IFI

The IEEE encoding scheme also splits the number into a fractional part F and an
exponent part E but this scheme uses 2 as the exponent base.

x = F x 2e-t27 (2)

IEEE encoding stores F using 23 bits and E using 4 bits:

l Bit Number ]

=l°l. l. l. l. l. l=l=l=l=l.°l- l=l;I- l lzlel"-I;l°lolJJolJJJHIJol
ISlEIEIEIEIEIE[EIEIFIFIFIF IFIFIFIF IFIFIF IFIFIFIFIF IFIFIFIFIFIF IFI

10-2 CREWESResearchReport Volume5 (1993)



Rationalizing varying seismic data formats

The difference appears subtle, but the encoding scheme affects the range and
accuracy of possible data values:

Table 3. Range and accurac, of two floating point encoding schemes

Floating point scheme Range Accuracy

IBM370 10-78- 1076 1 part in0.79 x 1029

IEEE 10-39- 1038 1part in 1.6x 1029

The point of this discussion is not to explain the intricacies of the different
floating point formats, but rather, to show that different ranges and resolution can be
obtained from the same number of bits depending on the binary encoding scheme
used. In theory, there could be thousands of possible integer, fixed point, and floating
point schemes, though in practice, only a small number of schemes are used.

Encoding scheme: Defines how a single number is converted into binary. Examples:
IBM 370 floating point, IEEE floating point.

One factor which affects data exchange between different systems is byte
order. Consider the following 32 bit binary number in IEEE Floating point format:

I Bit Number

l

Is IEIEIEIEIEIEIEIEIFIFIF IFIF IF IFIFIFIF IFIFIFIF IF IF IF IFIFIFIFIF IF I

Almost all data processing systems shuffle data in groupings of 8, 16, 32 or 64
bits. Systems which use 8 bit groupings might store the above 32 bit word like this:

Memory Bit Number
Address 76543210

01 SEEEEEEE
02 EFFFFFFF
03 FFFFFFFF
04 FFFFFFFF

This system stores the most significant bits of the number first, and the least
significant bits last. The term used to describe a system such as this is big-endian,
because the big end is stored first. Other systems might store the same data like this:

Memory Bit Number
Address 76543210

01 FFFFFFFF
02 EFFFFFFF
03 FFFFFFFF
04 SEEEEEEE

This system stores the least significant bits first, and is called little-endian.

CREWES Research Report Volume5 (1993) 10-3



Order: When a large number of bits are segmented into smaller byte-sized
pieces, the byte order refers to the order in which the pieces are stored in byte-
addressable storage (memory or tape).

As we have seen, different storage schemes can be used when samples need to
partitioned into groups of a smaller size. Consider the case in which several

samples of 20 bits are stored in 8 bit groups. One scheme might pad the 20 bit number
four zeros t o make a 24 bit word. Each byte of the 24 bit word is then stored

sequentially:

Byte Bitnumber Usage
Number 76543210

1 EEEEUUt_ Sample 1 4 bits exponent, 4 bits unused
2 SDDDDDDD Sample 1 Sign and top 7 bits of fraction
3 DDDDDDDD Sample 1 Sign and bottom 8 bits of fraction
4 EEEEUUUU Sample 2 4 bits exponent, 4 bits unused
5 SDDDDDDD Sample 2 Sisn and top 7 bits of fraction
6 DDDDDDDD Sample 2 Sign and bottom 8 bits of fraction
7 EEEEUUUU Sample 3 4 bits exponent, 4 bits unused
8 SDDDDDDD Sample 3 Sign and top 7 bits of fraction
9 DDDDDDDD Sample 3 Sisn and bottom 8 bits of fraction

10 EEEEUIJUU Sample 4 4 bits exponent, 4 bits unused
ii SDDDDDDD Sample 4 Sign and top 7 bits of fraction
12 DDDDDDDD Sample 4 Sign and bottom 8 bits of fraction

FIG. 1. A possible storage scheme for 20 bit floating point data samples

storage method is wasteful, since 4 bits are wasted for every data value. One
popular method for packing data samples is to store four samples at a time: first
storing four four-bit exponents followed by four 16 bit functions.

Byte BitNumber Usage
Number 76543210

i EEEEEEEE Sample2 Exponent (4 top bits)
Sample 1 Exponent (4 bottom bits)

2 EEEEEEEE Sample 4 Exponent (4 top bits)
Sample 3 Exponent (4 bottom bits)

3 SDDDDDDD Sample 1 Sign and 7 most sisnificant bits
4 DDDDDDDD Sample 1 8 least significant bits
5 SDDDDDDD Sample 2 Sign and 7 most significant bits
6 DDDDDDDD Sample 2 8 least significant bits
7 SDDDDDDD Sample 3 Sign and 7 most significant bits
8 DDDDDDDD Sample 3 8 least significant bits
9 SDDDDDDD Sample 4 Sisn and 7 most significant bits

10 DDDDDDDD Sample 4 8 least significant bits

FIG. 2. A storage scheme for 20 bit floating point using exponent packing

CREWES Research Report Volume 5 (1993)



Rationalizing varyinq seismic data formats

Storage scheme: Defines how several data values are stored into memory. Most
often, data are stored sequentially, but packing several exponents together and several
fractional parts together can sometimes be more efficient.

From the discussion presented, it is clear that there are hundreds of
permutations of data storage schemes. Many of the possible permutations are not
used, because they are not useful, and because the cost of supporting several data
types in data processing systems is expensive. At this time, there are probably less
than 100 schemes in-use in the whole field of computing. Of these, only a quarter are
commonly used for storing or processing seismic data. If we ignore the byte-order
attribute we can reduce the number of commonly used binary formats to small
number.

Table 4. Data representations in common use in seismic acquisition and _rocessing

Data type Encoding scheme Storage Scheme Common Name Standard

Generic Total Exp. Exp. Frac. Exp.
Type Bits Base Bits Bits Excess

Real 8 4 2 5 0 sequential 8 bit quaternary SEG-D
exponent

Real 8 16 2 5 0 sequential 8 bithexadecimal SEG-D
exponent

Real 16 4 3 12 0 sequential 16 bit quaternary SEG-D
exponent

Real 16 16 2 13 0 sequential 16 bit SEG-D
hexadecimal

exponent
Real 20 16 4 15 0 10bytepacked 20 bitfloating SEG-D

point SEG-Y
Real 32 16 7 24 64 sequential IBM370floating SEG-Y

point SEG-D
Real 32 2 8 23 127 sequential IEEE 32 bit SEG-2

floating point
Real 64 2 11 52 1023 sequential IEEE64bit SEG-2

floating point
Integer 8 sequential 8bitfixedpoint SEG-D

Integer 16 sequential 16 bit fixed point SEG-D
SEG-Y
SEG-2

Integer 32 sequential _2bit fixed point SEG-Y
SEG-D
SEG-2

Integer 64 sequential 32bit fixedpoint SEG-2

Integer 24 2 8 15 0 sequential,32bit 32bit fixedpoint SEG-Y
aligned with gain values

Describing a binary format using four different parameters is somewhat
cumbersome. By grouping sets of parameters together we can describe most of the
common binary formats using only 24 combinations of these four parameters. The
parameter which tends to vary most from system to system is "byte order". To reduce
the number of combinations we can exclude "byte order" as one of the parameters
that makes up a combination. It is proposed that these combinations be called "data
representations".

CREWES Research Report Volume 5 (1993) 10-5



Bland

Data Representation: A combination of binary format parameters including: generic
data type, encoding scheme, and storage scheme. Data representations are
independent of byte order.

Using this definition of data representation, any binary format can be specified
by a data representation and byte order.

CASE STUDY: SEG-Y FORMAT

In 1975 the SEG Technical Standards Committee published the SEG-Y
standard for demuhiplexed field tapes. It is useful to study the way the SEG-Y
standard has been implemented by software vendors, since it is a illustrates how
problems can arise when a data format standard is not adhered-to. A large percentage
of files that are called SEG-Y format are in fact, non-compliant. This frustrates users
who may not understand the details of data formats, and are faced with the problem of
working with these files on a daily basis.

The SEG-Y standard specifies that data samples should be stored using IBM
370 encoding schemes and byte order. Unfortunately, most current computers,
including new IBM PC's and IBM workstations, use IEEE floating point encoding.
Even though programmers who write software applications that generate SEG-Y
format data should strive to conform to the SEG-Y standard, many do not. Due in part
to processing-speed considerations, and more commonly, programming ease, many
programmers choose ignore the strict binary encoding specifications in the standard.
As a result, a large amount of software stores sample values in SEG-Y files using the
default binary format of the host computer. Since most processing is no longer
performed on IBM mainframes, many software packages produce non-conformant
SEG-Y files.

More programs would conform to the SEG-Y standard if there was a method
for simple and efficient binary format translation. The binary conversion library
presented in this paper addresses this need.

There are other common problems with the SEG-Y format that are unrelated
to binary format. Since the SEG-Y standard was designed for magnetic tape, there is
no provision in the standard for storing SEG-Y format information onto non record-
oriented storage media such as disk files (Figure 3). The most common
implementation of SEG-Y on disk completely ignores record structures (Figure 4).
Many implementations of Fortran simulate a record structure on disk files by
interspersing record markers throughout output data files. Unfortunately, this
unwanted feature is often impossible to defeat. As a result, many Fortran programs
generate data files which contain Fortran record information (Figure 5). Naturally,
compatibility problems arise when these tainted SEG-Y files are used as input to
programs which do not expect Fortran record information. Constant-length records
constitute a significant deviation from the SEG-Y standard.

Figure 6 shows another kind of SEG-Y variant. Fortran programs which use
fixed-record length files for SEG-Y output produce this kind of file. These files not
only contain unwanted Fortran record markers, but also padding to extend all records
to a constant length.

10-6 CREWESResearchReport Volume5 (1993)



Rationalizing varying seismic data formats

Legend to fill space of record markers

All measurements in bytes

3200 ._l _ 400 240+ N 240+N

I I,I I'l I I' ' IEBCDIC Binary Trace Trace Trace Trace
cardimage Reel #1 I #1 #2 I #2

block Header Header I Data Header I Data

FIG. 3. SEG-Y on tape with inter-record gaps

3200 ..._ 400 _I_ 240+N _ 240+ N _I

IE_o'_I_in_y_r_e' _r_c°I_c_'_ra_°]
cardimage Reel #1 I #1 #2 I #2

block Header Header I Data Header I Data

FIG. 4. SEG-Y on disk with no inter-record markers

iTMt" 3208 _ 408 _ 248+ N _ 248 + N _I

EBCDIC Binary Trace I Trace ace Trace
cardimage Reel #1 I #1 I #2

block Header Header i Data [/_Header i Data

FIG. 5. SEG-Y on disk with Fortran start (S) and end (E) record markers

_,, 3208 __L.._ 3208 ..._ 3208 .._]

t°tlITrceITract It-S cardimage S Reel S #1 I #1 AD

block Header Header I Data

1,,I 3208 _]

_ Trace Trace IPADH#2 #2
Header Data

FIG. 6. SEG-Y on disk with Fortran record markers and record padding

CREWES Research Report Volume5 (1993) 10-7



Bland

BINARY FORMAT CONVERSION LIBRARY

A binary format conversion library was written to solve the problem of
processing SEG-Y data on systems that use different floating point encoding schemes
and byte orders than the SEG-Y files they process.

SEG-YTape

Data conversion from

IBM 370 32 bit floating
point, big-endian to
IEEE 32 bit floating
point, little-endian

Computation I

Data conversion from

IEEE 32 bit floating
point, little-endian to
IBM 370 32 bit floating
point, big-endian

_'_ SEG-Y Tape

FIG. 7. Binary conversions necessary for processing SEG-Y data on a PC

A general purpose binary translation function library was deemed useful, not
just for SEG-Y manipulating programs, but also for programs that deal with SEG-D
and SEG-2 formats. A general purpose function was designed so that translation
between any two binary representations and byte orders could be performed with a
single function call. The binary translation function takes input from a memory
buffer, containing one or more data samples in any binary format, and sends output to
another memory buffer in a different binary format. There is no restriction on either
the input or output buffer formats: neither needs to be in a format that is directly
supported by the host hardware.

10-8 CREWES Research Report Volume5 (1993)



Rationalizingvaryingseismicdataformats

When designing the library, some overall design goals were chosen.
Portability of code across different systems was considered extremely important. Not
only did the function have to operate on systems with different byte orders and native
encoding schemes, but it also had to compile on a 16 bit DOS compiler as well as 32
bit and 64 bit UNIX systems. Since there are, in theory, hundreds of possible formats,
the library was constrained to handle only SEG-Y, SEG-2 data formats. Some of the
more obscure formats found in SEG-D were not initially implemented, but
allowances were made so that they could easily be added at a later date. The final two
design goals were ease of use and speed.

To make the function easy to use, an abstraction called a binary format
conversion operator was conceived. A conversion operator is an abstract data type
that the end-user of the function library need not manipulate directly: a function is
provided for setting-up the operator. This operator defines what binary conversion
will be performed between the input and output data buffers. The conversion operator
is defined by four parameters:

• input data representation
• output data representation
• input byte order
• output byteorder

Before performing a binary conversion, the conversion operator must be
obtained using the getBinCvtOper0 function. The user supplies this function with the
input buffer's binary representation and byte order as well as the desired binary
representation and byte order for the output buffer. The function returns the
appropriate data conversion operator to the user as its return value.

The actual binary conversion function is named binCvt0. The user supplies
this function with a binary conversion operator and an input and output data buffer.
The user also supplies the number of elements to be converted from one buffer to the
other. The function has been designed so that the input and output buffers may be
identical. In this case conversion is done in-place.

It may seem peculiar to have to first create a binary conversion operator, and
then do the actual conversion. The two-step approach works well since binCvt0 only
needs four parameters. If all conversion related parameters were passed to a single
function, the function would require seven parameters. Using a four parameter
function improves code readability and, on some systems, increases speed. Another
advantage of this calling convention is that the user's conversion request only needs
validation once, and some pre-processing can be performed ahead of time so that
multiple calls to binCvt0 can run faster.

A final design feature of the binary conversion library is its ability to perform
in-place translations. If the input data buffer and output data buffers are the same, the
output overwrites the input.

The binary conversion library that is presented is currently under development
at the CREWES Project. It is being incorporated into several CREWES programs that
deal with SEG-Y and SEG-2 file conversion. This library will also be the basis for
another high-level function library that will be used to generate SEG-Y and SEG-2
format files, as well as a number of vendor-specific format files. We hope to release
this high-level multi-purpose I/O library in a future software release. The current
CREWES software release will contain a prototypical binary conversion function

CREWESResearchReport Volume5 (1993) 10-9



Bland

library as part of the SG2TOSGY program. The files bincvt.c and bincvt.h contain the
implementation of this library. If this software release is of interest, please refer to the
paper entitled "CREWES software release" (Foltinek, 1993) in chapter 32.

CONCLUSION

Due to the large number of parameters involved in data format specification it
is easy to understand why seismic data transfer is plagued with problems. A first step
to reducing these problems is to improve software documentation to fully describe the
data formats used for input and output files. The nomenclature presented in this paper
could be used to aid in the explanation. Too often documentation of data formats is
too ambiguous. "IEEE Floating point format" for example, does not deal with the
issues of byte order or data storage scheme. Hopefully some of issues related to data
file generation from Fortran will be corrected by new versions of Fortran which allow
more flexible ways of writing non-record oriented files. In the mean time, programs
which create data files which do not conform exactly to the SEG standards should
make their non-conformance very clear to the user in the documentation as well as at
run-time. Versatile and portable binary conversion function libraries, such as the one
presented here, can also aid in generating standard conformant data files.

REFERENCES

Foltinek, CREWES Software Release: CREWES Research Report, v. 4
"Recommended standards for digital tape formats", Geophysics, v. 32, p. 1073-1084, v.37, p. 36-44
Vranesic, Z.G., and Zaky, S. G., Microcomputer structures, Saunders College Publishing, New York,

1989, p. 699-703
Pullan, S.E., 1990, Recommended standard for seismic (/radar) data files in the personal computer

environment, Geophysics, v. I0, p 1260-1271

10-10 CREWES Research Report Volume5 (1993)


