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ABSTRACT

A linear-with-depth velocity function is a typical assumption in clastic basins of
Tertiary-Quaternary origin sometimes associated with salt domes.

In this case, the raypaths can be approximated by arcs of circles with spherical
wavefronts. The 2D Kirchhoff summation curve is no longer valid for large offsets and
steep dips. It then becomes neccesary to consider a non-hyperbolic summation curve
for proper time imaging of dips up to and beyond 90° for these "turning” zero-offset
sections.

A non-hyperbolic summation curve, based in a 8th order polinomial equation,
is used to image 120° dipping events. It is applied to synthetic zero-offset sections
generated by turning-ray modelling on depth models including a diffractor point and a
2-D sphere.

INTRODUCTION

The basic theory of the turning-ray modeling assumes that when the velocity
field is linear-with-depth, V =V (1+ kz), the resultant theoretical raypaths are arcs of
circles (Hagedoorn, 1954; Kleyn,1983, Richardson, 1992) defined by

x—cot|— || +|z—|— || =|csc| ==
( ( k ) k k
Where 6, represents the initial angle of the raypath from the vertical as it leaves the

source, X is the horizontal distance between the source-reflector point spent by the
turning ray and z, is the depth of the reflector point. The traveltime along such an arc at

a reflector depth z=z, is given by
2
T= L ln(tan(g))—ln(tan(&)) @
kV, 2 2

6 = arcsin((1+ kz,)sin 6, 3)

Where

represents the incident angle of the raypath when it reachs the reflector as illustrated in
Fig. la.
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Both expressions can be used to estimate the two-way travel time associated
with a given CMP for normal incidence reflections in a linear velocity medium. The

relation between dip and 6 for normal incidence on a sphere is shown in Fig. 1b. By
knowing the depth model it is easy to define the dip and angle 6 at each point on the
reflector. Then given the gradient k and depth z,, 6, and travel time T can be
determined by egs. (2-3).

The resultant t-x bending curves for a diffractor point buried at two different
depths 1,500 m and 4,000 m, with an initial velocity V, = 1,600 m and a gradient k =
0,3/V,, are shown in Figs. 2a, b.

From both pictures it is evident that for the shallower diffractor offsets up 5,000
m are necessary for recording dips up to 90°, while the deeper one requires offsets up
10,000 m. In contrast, the offsets required for recording the same dips without bending
effect are two times higher than the former ones. In other words, the linear velocity
gradient reduces the maximum offset range for recording steeper dips.

The Figs. 2a, b shows other important fact related to Kirchhoff time migration
when a linear gradient is present The basic assumption in the post-stack Kirchhoff
migration is to sum seismic amplitudes on a zero-offset section along a hyperbolic
summation curve and to put the summed amplitude at its apex as one migrated sample
(Yilmaz, 1987) . The conventional expression for this summation curve is given by

2
4
T2=T02+4(L) @
\%

ms

where T, is equal to 2(2"/, ), h is the half-offset, z is the reflector depth, V,  is the

rms velocity at the apex.

For a linear gradient velocity medium the rms velocity is given by

1% &)
V: = (z—k;;-)exp(zvokro -1)

where T, is the vertical two-way time.

The hyperbolic summation curve is not valid for imaging steeper dips. In fact,

the hyperbolic approach may only be valid for dips up to 50°. A non-hyperbolic
summation curve, similar to the t-x bending curve of the diffractors in Fig. 2a and b,
would enable migration of steeper dips.

This non-hyperbolic curve can be obtained with the least-square curve fitting
method for a array of values (x,t) that define a given diffraction curve. Fig. 3 shows
this curve fitting for three diffractors at different depths; it is apparent that this

approximation is valid for dip up to 120° and offset values to 25,000 m, respectively.

The non-hyperbolic Kirchhoff summation curve (Fig. 4) can be expressed as
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2 4 6 8
(62)
Tf,,yp=T§+4(—h—) —A( h ] +B( h ) +C(—h—)
Vims Vims Vims Vims

A=0.0765625(kV,)’ (6b)
B=0.0052843(kV,)*

C = 0.0000902(kV,)°

ANALYSIS OF RESULTS

Migration of a diffractor point

The first example is a diffractor point buried at z= 200 m with k = 0.5/V; and

V,= 1,600 m/s. The Fig. 5a shows the "zero-offset" bending raypaths associated to

dips between 0° - 135°.: The stacked section is indicated in Fig. 5b, with a maximum
two-way time of 7.5 sec.

The section was migrated using the conventional Kirchhoff summation curve is
shown in Fig. 5c. The diffractor point was succesful imaged to a spike at 7, = 0.245

sec, but these exist "spreading" energy below the spike that couldn’t be collapsed by
applying this summation curve.

The section was re-migrated with a non-hyperbolic Kirchhoff summation using
eq. (6a) and is shown in Fig. 5d. The noisy effect related to the “spreading” energy had
been significantly reduced after the application of the approximation given in the egs.
(6a,b).

Migration of a 2-D Sphere

The next depth model is a 2-D sphere of radius 2000 m. with its center burried
in a linear velocity medium at a depth z = 2100 m. Zero-offset turning raypaths
associated with dips up 120° and the zero offset section are shown in Figs. 6a, b
respectively.

The migrated sections obtained by using the hyperbolic and non-hyperbolic
Kirchhoff are shown in Figs. 6¢ and 6d. The hyperbolic results start to deviate at dips
beyond 80°, while the non-hyperbolic results show accurate data placewhen up to 120°.

CONCLUSIONS

This article has shown a practical approach to imaging steep reflections on
synthetic zero-offset sections by using a direct turning raypath modelling. It is based on
the application of a non-hyperbolic summation curve in Kirchhoff time migration. The
limitation of conventional hyperbolic summation was shown in a linear velocity
gradient medium. A migrated image for dip values up 120° was possible by expanding
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the diffraction equation to include terms up to the eight power. The coefficients of the
delitional terms were found by least-squared fitting on t-x curves for a diffractor point
buried at several depths. The non-hyperbolic summation curve was shown to be valid
for a velocity gradient range K between 0.3/Vo and 0.7/Vo, with Vo = 1,600 my/s.

Synthetic examples show that it is possible to migrate dips up to 120° when the
difraction shape is computed from equations using offset terms to the eight power while
the hyperbolic computation fails for dips over 80°. Both results suggest that the
hyperbolic summation curve can't collapse appropriately the energy corresponding to
dips greater than 80° in a linear velocity gradient scheme.
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FIG.1 (a) Turning raypath geometry.
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FIG.5c..Kirchhoff time migration with hyperbolic summation curve for the diffractor

point in Fig. 5a (K=0.5/V0, VO= 1,600 m/s).
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FIG.5d. Kirchhoff time migration with non-hyperbolic summation curve for the
diffractor point in Fig. 6a (K= 0.5/V0, V0= 1,600 m/s).
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FIG.6 (a) Turning raypath modelling for a 2-D sphere which center is burried at depth
z=2,100m (K=0.5/V0, V0= 1,600 m/s).
(b) Zero-offset section corresponding to Fig. 6a. Trace spacing 25 m.
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FIG.6c¢. Kirchhoff time migration with hyperbolic summation curve for the 2-D sphere
in Fig. 6a (K= 0.5/V0, V0= 1,600 m/s)..
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FIG.6d. Kirchhoff time migration with non-hyperbolic summation for the 2-D sphere in
Fig. 6a (K=0.5/V0, V0= 1,600 m/s).
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