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Theory of nonstationary linear filtering in the Fourier
domain with application to time variant filtering

Gary F. Margrave

ABSTRACT

A general linear theory is presented which describes the extension of the
convolutional method to nonstationary processes. Two alternate extensions are
explored. The first, called nonstationary convolution, corresponds to the linear
superposition of scaled impulse responses of a nonstationary filter. The second, called
nonstationary combination, does not correspond to such a superposition but is shown
to be a linear process capable of achieving arbitrarily abrupt temporal variations in the
output frequency spectrum. Both extensions have stationary convolution as a limiting
form.

The theory is then recast into the Fourier domain where it is shown that stationary
filters correspond to a multiplication of the input signal spectrum by a diagonal filter
matrix while nonstationary filters generate off-diagonal terms in the filter matrix. The
width of significant off-diagonal power is directly proportional to the degree of
nonstationarity. Both nonstationary convolution or combination may be applied in the
Fourier domain, and for quasi-stationary filters, efficiency is improved by using sparse
matrix methods.

Unlike stationary theory, a third domain which combines time and frequency is also
possible. Here, nonstationary convolution expresses as a generalized forward Fourier
integral of the product of the nonstationary filter and the time domain input signal. The
result is the spectrum of the filtered signal. Nonstationary combination reformulates as
a generalized inverse Fourier integral of the product of the spectrum of the input trace
and the nonstationary filter which results in the time domain output signal. The mixed
domain is an ideal domain for filter design which proceeds by specifying the filter as an
arbitrary complex function on a time-frequency grid. Explicit formulae are given to
move nonstationary filters expressed in any one of the three domains into any other.

INTRODUCTION

A common occurrence in geophysical research and data processing is the need to
apply convolutional operators which somehow depend on both variables of a Fourier
transform pair. Time variant filtering is a typical example. Filters are convolutional
operators which shape the spectrum of a time series therefore a time variant filter must
both shape the spectrum and change with time. Another example is the vertical
extrapolation of a wavefield through a laterally variable velocity structure. The
kinematics of wavefield extrapolation can be handled by a phase shift which depends
on horizontal wavenumber and velocity, or equivalently by a spatial convolution over
the lateral coordinate. Thus, when velocity varies laterally, a convolution is desired
which depends on both the lateral coordinate and the horizontal wavenumber.

Ordinary convolutional filters are incapable of directly handling these and other
similar situations since they assume a "stationary" impulse response. By stationary it is
meant that the filter's properties do not change with time or space. Since the
convolution theorem (see any good text on signal processing, for example Karl, 1989,
p 88, or Brigham ,1974, p 58) states that stationary convolution is a multiplication of
Fourier spectra, it is commonly assumed that Fourier methods are also incapable of
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handling nonstationary filters. However, a more fundamental result is that a continuous
function's Fourier transform is a complete description of the function. It follows that if
nonstationary filtering can be done at all, it can be done in the Fourier domain.

Nonstationary filtering is done routinely in seismic data processing (and elsewhere).
Wavefield extrapolation through laterally varying media (i.e. depth migration) is
typically done with either spatially varying finite difference techniques (see Claerbout
1985) or spatially variant convolutional operators (Berkhout 1985, section X). Gazdag
and Squazzero (1984) have accomplished wavefield extrapolation in this setting with
the PSPI method which amounts to lateral interpolation between wavefields
extrapolated with stationary Fourier phase shifts.

Time variant filtering has been implemented in various ways. The simplest method is
to apply stationary filters to different overlapping trace segments and to interpolate them
into a unified result (Yilmaz, 1986, p25-26). Pann and Shin (1976) show that the
interpolation results in an embedded spectrum which is not the desired one in the
overlap zones. Pann and Shin (1976) and later Scheuer and Oldenburg (1988)
implemented time varying bandpass filters with an efficient algorithm which uses the
theory of complex signals (Taner et al. 1979) as a basis. These methods achieve a filter
with a continuously variable pass band and a possible nonstationary phase rotation.
However, they are limited in the shape of the amplitude and phase spectra and the rate
of time variation. Park and Black (1995) present an excellent summary of previous
work as well as a new method based upon Fourier transform scaling laws. Their
method is able to achieve a more rapid and flexible temporal variation of the bandpass
characteristics. A third class of time variant filters are implemented as recursive
algorithms (Stein and Bartley, 1983). These methods can be quite strongly
nonstationary but have only very limited phase options and, for short recursions, may
produce amplitude spectral responses far from the desired ones (see Park and Black,
1995, or Scheuer and Oldenburg, 1988 for summaries).

Also important in this context are nonstationary filters based on nonstationary
transforms such as the wavelet transform (Chakraborty and Okaya, 1994, Kabir et al.,
1995, Chakraborty and Okaya, 1995), the short time Fourier transform, or the Gabor
transform (Gabor, 1946). (For a general discussion on nonstationary transforms see
Kaiser, 1994). These methods are capable of achieving quite general filtering effects
but their acceptance has been slow for a number of reasons including: complex
mathematics, slow or unavailable software, and difficulty relating the theory to ordinary
stationary theory. These problems are gradually lessening and there will certainly be
increased usage of nonstationary transforms in the next few years. Nonstationary
transform techniques are perhaps most important when the nonstationary filter must be
determined from a spectral analysis of the data. However, there are many situations
when the filter parameters are either known apriori (as in depth migration) or they are
easily estimated without a nonstationary transform (as is the often case with time variant
filtering). Given such an apriori nonstationary filter specification, it is shown here that
the filter can be efficiently applied in the time domain or the ordinary (stationary)
Fourier domain by a generalization of convolutional concepts. It may be sensible to use
nonstationary transforms to design filters which are then applied with the techniques
developed here.

This paper proposes a general mathematical theory for nonstationary filtering. The
basis for the theory is a new extension of the stationary convolutional integral such that
it contains stationary filtering as an obvious limit and that it forms the scaled
superposition of nonstationary impulse responses. This process is termed nonstationary
convolution. In addition, an alternate extension for the stationary convolution integral is
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developed which is called nonstationary combination  and, though it does not
correspond to the scaled superposition of impulse responses, it still has stationary
convolution as a limiting form. Unlike nonstationary convolution, nonstationary
combination is found to be capable of producing an output spectrum which varies in
time with arbitrary abruptness. The distinction between nonstationary convolution and
combination is that the former considers the temporal variation of the filter to be in
terms of "input time" while the latter assumes "output time".

Both processes are then reformulated in the Fourier domain. When represented as
matrix operations appropriate for digital filters, stationary filters are shown to be
achieved as the multiplication of the input signal spectrum by a diagonal matrix which
has the filter spectrum on the diagonal. As the filter becomes nonstationary, the spectral
filter matrix generates off diagonal terms to describe the filter variation. The width of
the significant off diagonal power is directly proportional to the degree of
nonstationarity. Quasi-stationary filters may be implemented efficiently in the Fourier
domain by sparse matrix methods which keep only the "significant" spectral
components.

In addition to these two traditional domains for filter application, two mixed domains
of time and frequency emerge. Nonstationary convolution is recast as a generalized
forward Fourier integral of the product of the nonstationary filter and the time domain
signal which yields the spectrum of the filtered trace. Alternatively, nonstationary
combination may be expressed as a generalized inverse Fourier integral of the product
of the nonstationary filter and the spectrum of the input trace. This results in a time
domain output signal.

This theory is capable of applying any nonstationary filter with arbitrary time and
frequency variation of the amplitude and phase spectra. The three possible application
domains as well as the two possible application methods (i.e. convolution and
combination) allow considerable latitude in filter optimization for both performance and
efficiency. The simple and natural connection of this theory with ordinary stationary
filter theory allows stationary filter design techniques and concepts such as minimum
phase to be easily extended into the nonstationary realm.

PRINCIPLES OF NONSTATIONARY LINEAR FILTERING

Generalization of stationary convolution

It is well understood that stationary convolutional filters are completely described by
their impulse response (Papoulis, 1984, p. 15-18). This means that if the response of a
linear, stationary process to a unit impulse input at any particular time is known, then
the response to an impulse at any other time is identical, except for a causal delay
(principle of stationarity), and a scale factor. The response to more complicated inputs
is the scaled superposition of many identical impulse responses. The process of
forming the scaled superposition is called convolution. If h(τ) represents an input signal
and a(u) is an arbitrary linear stationary filter, then g(t), the filtered output, is given by
the convolutional integral

  
g(t) = a(t – τ)h(τ)dτ

– ∞

∞

≡ a(t) • h(t) (1)

Certainly this is a familiar expression to most readers; however, it is presented again
here so that the nonstationary results can be seen as reasonable generalizations of the
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stationary case. The presence of   a(t – τ)  in (1) means that the actual response of the
filter to an impulse at time   τ0  is   a(t – τ0)  which is a delayed version of the filter; the
delay being a consequence of a causality constraint. Thus, though a(u) is called the
filter impulse response, the actual response to a general impulse is   a(t – τ0) . (It is a
simple matter to prove that   h(t) • a(t) = a(t) • h(t)  and thus h(t) could equally well be
delayed in (1); though, the form of (1) is better suited to generalization for
nonstationary filters.)

The generalization of (1) to nonstationary systems can be done in a number of ways
though some are more intuitively appealing than others. Pann and Shin (1976) and
Scheuer and Oldenburg (1988) have chosen to replace   a(t – τ)  with   a(t,τ)  which refers
to an arbitrary real function of t and τ . Though correct, this formalism is perhaps
overly general and does not suggest a simple relation to the stationary form (1).
Instead, consider replacing   a(t – τ)  with   a(t – τ,τ) . This notation preserves the concept
of delaying the filter response to account for causality and incorporates explicit τ
dependence to describe the filter variation with time. Also the stationary limit is simply
obtained by letting the τ dependence become constant. Alternatively,   a(t – τ)  could also
be replaced with   a(t – τ,t)  with similar appeal. Intuitively,   a(t – τ,τ)  and   a(t – τ,t)  differ
in that the former prescribes the temporal variation of the nonstationary filter as a
function of input time, τ , while the latter uses output time, t , for the same purpose.
The choice of which form to use and the comparison of results which follow from both
is a central theme of this paper.

Light can be cast on this issue by considering the matrix equivalent to discrete
convolution. Given sampled versions of g(t), h(t), and a(t), then the convolutional
process can be represented as

  gk =∆t ak – jh jΣ
j

(2)

Here ∆t is the temporal sample interval and the range of summation is left implied and
is assumed to be over all appropriate values. This expression can be recast as a matrix
operation by representing g and h as column vectors and building a special
"convolutional matrix" with a(t) (see Strang, 1986, for an excellent discussion). As
shown in equation (3), such convolutional matrices have a high degree of symmetry
and are known as "Toeplitz" matrices. There are a number of equivalent ways to
construct a Toeplitz matrix. First, each sample of a(t) can be replicated along the
appropriate diagonal. Alternately, a(t) can be replicated in each column with zero time
always being shifted to the main diagonal. Lastly, a(t) can be time reversed and
replicated in each row again with zero time shifted to the diagonal. Each of these
methods leads to the construction of the same Toeplitz matrix; however, all three
symmetries cannot be retained in a nonstationary generalization. Figure 1  is a graphical
representation of equation (3) for the case of the convolution of a minimum phase
wavelet with a reflectivity sequence to produce a simple "seismogram". (In this figure
and all other similar ones in this paper, a gray scale is used which maps black to a large
positive number, white to the negative of the same number, and medium gray to zero.)
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Fig. 1. An illustration of stationary convolution as a time domain matrix operation. (A) is the
stationary convolution matrix for a particular minimum phase bandpass filter. The matrix
displays Toeplitz symmetry meaning that each column contains the filter impulse response,
each row contain the time reverse of the impulse response, and any diagonal is constant. (B)
is a reflectivity series in time to which the convolution matrix is applied. (C) is the output
stationary seismogram.
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In order to understand how to generalize convolution such that it models physical
nonstationary systems, it is instructive to examine the matrix multiplication in equation
(3). Beginning with g0 and performing the matrix multiplication for the first few terms

 g0 = + a0h 0 + a– 1h 1 +a– 2h 2 +
g1 = + a1h 0 + a0h 1 +a– 1h 2 +
g2 = + a2h 0 + a1h 1 +a0h 2 +

(4)

Examination of these equations shows that gk is computed by multiplying the kth row
of the convolution matrix times [h] in an element by element fashion and adding the
products. This is the familiar process of matrix multiplication "by rows". Also, it is a
simple matter to check that equation (2) evaluates to the set (4). Less familiar, but
fundamental to this analysis, is matrix multiplication "by columns" (Strang, 1986).
Examination of the set (4) shows that each sample of hj multiplies a column of the
convolution matrix and the set is equivalent to
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Thus, each sample of h(t) is used to scale a time shifted version of a(t) and the set of
scaled and shifted waveforms are then superimposed. This is matrix multiplication "by
columns" and it is equivalent to the familiar process of convolution by replacement
which is the numerical analog of the scaled superposition of impulse responses. This is
a desirable property to preserve in a nonstationary generalization since it can be
regarded as a direct consequence of Green's function analysis for linear partial
differential equations (Morse and Feshbach, 1953).

The fundamental difference between stationary and nonstationary linear filters is that
the impulse response of the latter must be allowed to vary arbitrarily with time. The
complete description of a general nonstationary filter requires that its impulse response
be known for any and all times. Given such a description, it is easy to see how to
modify equations (5) to apply it as the scaled superposition of time varying impulse
responses. Each column vector on the right hand side becomes the impulse response of
the filter at the time corresponding to value of hj which scales the column. For the
stationary filter, these impulse responses are all the same except for a time shift, while
for the nonstationary filter they vary as prescribed in the filter description. If a second
subscript is attached to a, the nonstationary filter application can be written
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g1

g2

g3

= +

a0,0
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Obviously, equations (6) can be written as a single matrix operation similar to (4) in
which the impulse response of the filter is contained in each column. A graphical
representation of this matrix product is shown in figure 2 for the case of the application
of a forward Q filter. The Q filter was constructed using the constant Q theory of
Kjartansson (1979) and has been further bandlimited by the minimum phase waveform
used in figure 1. Inspection of the nonstationary convolution matrix shows a waveform
in each column which is progressively losing overall amplitude and high frequency
content while undergoing a phase rotation. In the case of a Q filter, the frequency decay
and phase rotation are linked by the minimum phase condition (Kjartansson, 1979 and
Futterman, 1962).
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Fig. 2. An illustration of nonstationary convolution as a time domain matrix operation. (A) is the
nonstationary convolution matrix for a particular forward Q filter bandlimited by the stationary
waveform of figure 1. Each column contains the convolution of the minimum phase waveform
of figure 1 and the minimum phase impulse response of a constant Q medium for a traveltime
equal to the column time. (B) is a reflectivity series in time to which the convolution matrix is
applied. (C) is the output constant Q seismogram. Compare to figure 1.

Nonstationary convolution and combination

Thus, conceptually at least, it is a simple matter to apply an arbitrary nonstationary
filter via a matrix multiplication in the time domain. This operation is a direct extension
of stationary convolution and will be referred to as a generalized or nonstationary
convolution. Equation (2) can be modified to express (6) as

  gk =∆t ak – j , jh jΣ
j

(7)

 Equation (7) suggests that the convolution integral of equation (1) should be
generalized to

  
g(t) = a(t – τ,τ) h(τ) dτ

– ∞

∞

(8)

Thus replacing   a(t – τ)  with   a(t – τ,τ)  in equation (1) is seen to preserve the notion of a
scaled superposition of impulse responses. The other possible form alluded to
previously is

  
g(t) = a(t – τ,t) h(τ) dτ

– ∞

∞

(9)

The matrix equivalent to (9) places the filter impulse response (time reversed) in the
rows of the "convolution" matrix and the result does not correspond to the desired
scaled superposition. However; it will be shown that (9) has interesting properties
which may be of considerable utility in a data processing scheme. Equation (8) is called
nonstationary convolution while (9) will be termed nonstationary combination . Both
are a type of nonstationary filtering.
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The nonstationary impulse response function

Equations (8) and (9) imply the existence of a nonstationary impulse response
function which is a generalization of a(u). Let this function be called a(u,v) with u
symbolizing the time axis of a particular impulse response and v denoting the time axis
tracking the variation of the impulse form. If a(u,v) has no v dependence, then the
stationary limit is obtained. Like a(u) it is conceptualized without the causal delay as
shown in figure 3. For any input time, v, the matrix equivalent to a(u,v) contains the
non-delayed impulse response as a function of u in the vth column. Equation (8)
employs a(u,v) by letting u = t - τ and v = τ while (9) uses u = t - τ and v = t.  Thus
insertion of a(u,v) into (8) or (9) incorporates the causal delay and achieves a
nonstationary convolution or combination.
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Fig. 3. The impulse response matrices, a(u,v), for (A) figure 1 and (B) figure 2. (A) is a
stationary minimum phase bandpass filter and is therefore invariant with u. (B) is a minimum
phase constant Q impulse response matrix (bandlimited by the waveform in (A)) that varies
strongly with u in both amplitude and phase. Note that the vertical timing scales are
considerably enlarged relative to figures 1 and 2. The matrices in figures 1 and 2 are formed
by delaying each column of (A) and (B) respectively such that the time zero is on the main
diagonal.

An advantage of this formulation over that of Pan and Shin (1976) or Scheuer and
Oldenburg (1988) is that a(u,v) is a well defined filter response whose properties
follow immediately from stationary filter theory. Since a(u,v = constant) is an ordinary
impulse response, it can be dealt with using the stationary theory. For example, if it is
desirable that a(u,v) have the minimum phase property, then it is sufficient to ensure
that the phase and log amplitude spectra of a(u,v = constant) are related by the Hilbert
transform (Karl, 1989).

Reformulation in the Fourier domain

Though easily formulated, the time domain methods may not always be optimal for
reasons of computational efficiency and filter design. Given the speed of the fast
Fourier transform, it is often advantageous to perform stationary filtering in the
frequency domain so it is reasonable to expect that a large class of "quasi-stationary"
processes will benefit from a frequency domain formulation. Since there are two times,
t and τ, in equations (8) and (9) there will be two corresponding frequencies, f and F .
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The time and frequency of the input signal h are denoted (τ,F) and those of the output
signal are (t,f).

The fundamental results of the reformulation of equations (8) and (9) into the (f,F)
domain and the two mixed domains (t,F) and (τ,f) are summarized and discussed
below. The detailed derivations are presented in the appendix.

When transformed into the dual frequency domain of (f,F), the nonstationary
convolution operation (8) becomes

  
G(f) = H(F) A(f,f – F) dF

– ∞

∞

(10)

where G(f) and H(F) are the ordinary Fourier spectra of g(t) and h(τ) respectively and
are given by

  
G(f) = g(t) e–2π i f tdt

– ∞

∞

(11)

  
H(F) = h(τ) e–2π i F τdτ

– ∞

∞

(12)

and A(p,q) is the frequency connection function which is the 2-D Fourier transform
(spectrum) of a(u,v)

  
A(p,q) = a(u,v)e–2π i p ue–2π i q vdu dv

– ∞

∞

(13)

Similarly, nonstationary combination (9) can be moved into the Fourier domain
giving

  
G(f) = H(F) A(F,f – F) dF

– ∞

∞

(14)

where H(F) and A(p,q) are as given in (12) and (13) and  G(f)  is the Fourier transform

of  g(t)  in analogy with (11).

Comparing equation (10) with the time domain expression of nonstationary
convolution (8) shows that they are formally similar. Also (14) is similar to (9). In fact,
when the nonstationary filter is a nonstationary convolution in one domain it is a
nonstationary combination in the other domain. Equation (10) states that nonstationary
convolution can be achieved by a forward Fourier transform of h(t), a nonstationary
combination in frequency, and an inverse Fourier transform to yield g(t). The
nonstationary combination function in the frequency domain, A(f,f-F), is a frequency
shifted version of the 2-D Fourier transform of the nonstationary impulse response
function a(u,v). The meaning of equation (14) is similar.

Figure 5 shows the nonstationary Q filter of figure 2 being applied in the Fourier
domain via equation (10). Using the same mathematical formalism to move the
stationary operation of figure 1 into the Fourier domain results in figure 4. (In both
figures 4 and 5, only the amplitude spectrum of the complex frequency connection
function is depicted.) The matrix in figure 4 is purely diagonal and, if the diagonal were
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displayed in profile, it would show the amplitude spectrum of the stationary filter. The
matrix in figure 5 is non-zero everywhere but contains significant power only near the
main diagonal. Any linear measure of the width of the off diagonal energy will be
inversely proportional to the time scale over which significant nonstationarity occurs.
That is, it will be directly proportional to the degree of nonstationarity.

The stationary limit

In the stationary limit,  astat(u,v) = a(u) , and (13) reduces to

  
Astat(p,q) = a(u)e–2π i p ue–2π i q vdu dv

– ∞

∞

= A(p) e–2π i q vdv
– ∞

∞

= A(p) δ(q) (15)

where δ(q) is the Dirac delta function and A(p) is the Fourier spectrum of a(u).
Insertion of this result in (10) or (14) collapses the F integration to yield

 G(f) = A(f) H(f) (16)

which is the expected stationary result.

Similarly, if  A(p,q) = A(q)  then equation (10) expresses stationary convolution in
the Fourier domain. In this case   a(u,v) = δ(u) a(v)  (see equation (25) ) and equations
(8) or (9) collapse to simple multiplications.

Thus nonstationary convolution and combination both have the same stationary limit
which is the stationary convolution theorem (equation (16)). In other words, if  a(u,v)
shows no variation with v, then the Fourier transform over v yields only a dc (i.e. 0
Hz.) term in q. When this is substituted into (10), the matrix corresponding to A(f,f-F)
is diagonal with the dc term along the diagonal (figure 4). If  a(u,v)  becomes
nonstationary (i.e. varies with v), then the matrix form of A(f,f-F) generates off
diagonal terms which describe the nonstationarity (figure 5).
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Fig. 4. The application of the stationary filter of figure 1 in the Fourier domain using the
formalism of equations (10) and (13). (A) is the frequency connection matrix (only the
amplitude spectrum is shown), (B) is the complex spectrum of the input trace, and (C) is the
complex spectrum of the output trace. The matrix (A) is purely diagonal which is a direct
consequence of the fact that the impulse response matrix (figure 3 (A)) is stationary. The
spectra (B) and (C) are each related to their time domain equivalents in figure (1) by an ordinary
inverse Fourier transform.
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Fig. 5. The application of the nonstationary forward Q filter of figure 2 in the Fourier domain
using the formalism of equations (10) and (13). (A) is the frequency connection matrix (only
the amplitude spectrum is shown), (B) is the complex spectrum of the input trace, and (C) is
the complex spectrum of the output trace. (A) is computed from the 2-D Fourier transform of
the impulse response matrix (figure 3 (B)) and the off diagonal energy arises because the later
matrix is nonstationary. The spectra (B) and (C) are each related to their time domain
equivalents in figure (2) by an ordinary inverse Fourier transform. Compare with figure 4.
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Mixed domain formulations

In addition to the pure time and pure frequency domain formulations, two mixed
domain representations of nonstationary filtering are possible. Nonstationary
convolution is most naturally expressed in the (f,τ) domain while nonstationary
combination has a simple appearance in the (t,F) domain. As shown in the appendix,
nonstationary convolution (equations (8) or (10)) can be expressed in (f,τ) as

  
G(f) = α(f,τ) h(τ) e–2π i f τdτ

– ∞

∞

(17)

while nonstationary combination (equations (9) or (14)) in (t,F) becomes

  
g(t) = α(F,t) H(F) e2π i F tdF

– ∞

∞

(18)

where α(p,v) is the nonstationary transfer function given by

  
α(p,v) = a(u,v) e–2π i p udu

– ∞

∞

(19)

The frequency dependence of   α(p,v)  is simply the Fourier transform of each column of
a(u,v). Thus it gives the filter spectrum directly as a function of the time. The stationary
limit is found by   α(p,v) = A(p) , which inserted into (17) leads to the simple
multiplication of spectra, and when inserted into (18) leads to the inverse Fourier
transform of a spectral multiplication. Thus equations (17) and (18) are generalized
Fourier integrals which achieve nonstationary filtering.

Figure 6 depicts the application of the stationary bandpass example of figures 1 and
4 using equation (17). Figure 7 shows the corresponding result for the nonstationary Q
filter example of figures 2 and 5. Neither of these figures is a true equation since they
both omit a graphical representation of the Fourier exponential in equation (17).
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Fig. 6. Nonstationary convolution is represented in the (f,t) domain for the stationary case of
figures 1 and 4. The computation of equation (17) is depicted except for a Fourier matrix
representing exp(-2πift). (A) is the "nonstationary" transfer function (amplitude spectrum only)
which is computed by Fourier transforming the columns of the matrix in figure 3 (A), (B) is the
input reflectivity series in the time domain, and (C) is the Fourier spectrum of the desired
result.
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Fig. 7. Nonstationary convolution is represented in the (f,t) domain for the nonstationary case
of figures 2 and 5. The computation of equation (17) is depicted except for a Fourier matrix
representing exp(-2πift). (A) is the nonstationary transfer function (amplitude spectrum only)
which is computed by Fourier transforming the columns of the matrix in figure 3 (B), (B) is the
input reflectivity series in the time domain, and (C) is the Fourier spectrum of the desired
result.

Equation (18) can be used to show that nonstationary combination can achieve an
arbitrarily abrupt temporal change in the spectral content of the output filtered trace, a
property not found with nonstationary convolution. Consider the computation of (18)
when the nonstationary transfer function is set to its value at a particular time.
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gj(t) = α(F,t = tj) H(F) e2π i F tdF

– ∞

∞

(20)

Since   α(f,τ= τj)  is independent of time, equation (20) is an ordinary inverse Fourier
transform and represents the application of an ordinary stationary filter in the frequency
domain. Obviously

 g(t = tj) = gj(t = tj) (21)

Which simply says that the computation of the stationary filter (20) gives the same
result as nonstationary combination when both are evaluated at precisely the time  t = tj .
Therefore, given the set of functions {  gj(t) } where the subscript j is assumed to run
over all possible times as given by (20), the nonstationary combination can be regarded
as a "slice" through them evaluating each at  t = tj  (figure 8). An abrupt temporal change
of   α(F,t)  is simply handled because the {  gj(t) } are all computed with ordinary
stationary filter theory and then "sliced". Thus any discontinuities in the temporal
variation of   α(F,t)  are manifest as discontinuities in the spectral content of the output
trace.

time t

t = t
j

t
j

gj ( t )

g( t )

 Figure 8 illustrates the construction of g(t) by nonstationary combination as a slice through
the family of stationary filtered results gj(t). Each gj(t) may be considered as a conventionally
filtered trace while the index j runs across all possible filters in the nonstationary transfer
function.

As a direct consequence, nonstationary combination may be closely approximated by
a suitable temporal interpolation between a few stationary filtered results. The stationary
filtered signals may be regarded as a sparse sampling of the {  gj(t) } and, provided that
the desired filter is only slightly nonstationary, an interpolation scheme may be devised
to approximate it. Thus the limiting form of the method of time variant filtering by
interpolating between stationary filter panels (Yilmaz, 1986, p25-26) is nonstationary
combination and not nonstationary convolution.
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This ability to change the spectral content of the output trace with arbitrary
suddenness is a direct consequence of the fact that nonstationary combination changes
the filter parameters as a function of output time. Nonstationary convolution cannot
achieve such an abrupt change in the properties of the output trace because it varies the
filter with input time. The overlap of the superimposed impulse responses softens any
abrupt temporal changes in filter properties.

A similar analysis can be made of nonstationary convolution as given by equation
(17) to show that any discontinuities in the frequency variation of   α(f,τ)  are preserved
in the spectrum, G(f), of the output trace. This is done by considering the set {  Gj(f) }
formed by setting   α(f,τ) = α(f = fj, τ)  in (17) and arguing as before that G(f) is a slice
through that set.

DISCUSSION AND FURTHER EXAMPLES

Relations between the different filter application domains

Equations (8), (10), and (17) are all different ways of applying a linear
nonstationary filter by convolution. Similarly equations (9), (14), and (18) can apply
the same filter by nonstationary combination. The functions a(u,v), A(p,q), and α(p,v)
are all ways of specifying the nonstationary filter in the different domains. Given any
one of these functions, the other two may be computed by ordinary Fourier transform
operations. For filter design, it is usually preferable to specify α(p,v) in the mixed
frequency-time domain and then convert to the domain most advantageous for
numerical application. As such, in addition to equations (13) and (19), the following
formulae, all ordinary Fourier transforms, are of use

  
a(u,v) = α(p,v) e2π i p udf

– ∞

∞

(22)

  
A(p,q) = α(p,v)e–2π i q vdv

– ∞

∞

(23)

  
α(p,v) = A(p,q) e2π i q vdq

– ∞

∞

(24)

  
a(u,v) = A(p,q) e2π i p ue2π i q vdp dq

– ∞

∞

(25)

Figure 9 illustrates the relationships between a(u,v), A(p,q), and α(p,v).
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Figure 9 Illustrates the relationship between the various forms of nonstationary filter
specification. Arrows to the right represent forward Fourier transforms while those to the left
are inverse Fourier transforms. The four shorter arrows are 1-D transforms while the two longer
arrows are 2-D transforms.

From an analytic perspective, the domain of the filter application makes no
difference in the eventual result. However, in a numerical application it can have a
dramatic effect. For example, it is well known that stationary time domain filters often
need to be unrealizably long to achieve the same spectral performance that frequency
domain filters produce. This is true for nonstationary filters as well. Also, many
"almost stationary" filters may be implemented with great efficiency in the Fourier
domain since, like the filter in figure 5, their description is dominated by a narrow band
around 0 Hz of the frequency connection function (eqns (13) and (23) ).

As in stationary theory, there will also be cases when the time domain
implementation is preferred. Unlike stationary theory, there is now a third possibility,
the mixed domain, which also has its advantages. If a filter is designed in the mixed
domain, then there can be considerable computational effort required to transform it to
either other domain. If the filter is to be applied to many traces before it must be
redesigned, then the cost of moving it to another domain may be justified. On the other
hand, if the filter must be redesigned for each trace, then it may make more sense to
simply apply it directly in the mixed domain.
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A bandpass filter example

A common use of a nonstationary filter is the time variant bandpass filter. Successful
techniques for such filters have been presented by others (e.g. Pann and Shin 1976,
Scheuer and Oldenburg, 1988, and Park and Black 1995); however, unlike previous
methods, the technique developed here places no practical limits on the shape of the
amplitude and phase spectra or their temporal variation. Indeed, all of stationary filter
theory can be applied to the columns of the nonstationary connection function (or it's
Fourier transforms).

Figure 10 shows a design for a minimum phase nonstationary bandpass filter. The
filter bandwidth, as displayed in the nonstationary amplitude spectrum of figure 10 (A),
is 10-80 Hz at time 0 and ramps linearly down to 10-40 Hz at 1 second where it
becomes stationary. Filter slopes are gaussian shapes of width 5 Hz on the low end and
20 Hz on the high end. (The large width of the gaussian taper on the high end has
broadened the effective bandwidth by nearly 10 Hz.) The corresponding nonstationary
minimum phase spectrum (figure 10 (B)) was computed as the Hilbert transform of the
log of the amplitude spectrum for each column of the matrix.
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 Fig. 10. A design for a time variant minimum phase bandpass filter. (A) is the
amplitude spectrum which  varies from about 10-80 Hz at time 0 to 10-40 Hz at time
1.0 seconds. It is stationary from 1.0 to 2.0 seconds. (B) is the minimum phase
spectrum. A column of (B) is computed as the Hilbert transform of the logarithm of a
column of (A).

The filter design requires that the temporal axis and frequency axis of the
nonstationary transfer function be sampled compatibly with each other and with the data
to be filtered. Thus, for 4 mil data with a 2.044 second record length, there are 512
temporal samples and at least 257 frequency samples. For long traces, the design
matrix can consume significant computer memory and, for minimum phase, can require
a large number of Hilbert transforms. It is often the case that the filter may be designed
on a more sparse grid and interpolated (carefully!) to the desired dimensions. (Strictly
speaking, the interpolated columns are unlikely to be truly minimum phase; however,
the discrepancy is controllable.)

Figure 11(A) shows the frequency combination matrix, A(f,f-F), as appropriate to
apply the filter of figure 10 as a nonstationary convolution in the Fourier domain with
equation (10). Figure 11(B) is similar except that a zero phase spectrum was used.
Considering 11(B) first, note that the matrix is essentially diagonal below 40 Hz
because the amplitude spectrum (figure 10(A) ) is stationary in this range. Above 40
Hz, there is significant off-diagonal energy with a half width of about 5 Hz. In
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contrast, the minimum phase matrix is nonstationary throughout because the phase is
nonstationary at all frequencies as is evident in figure 10(B).
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 Fig.
11. (A) is the frequency connection matrix, A(f,f-F), (amplitude spectrum only) for the minimum
phase filter of figure 10. (B) is similar except that a zero phase spectrum was used. When
either matrix is used to multiply the spectrum of a seismic trace, the result is the spectrum of
the time variant filtered trace. (Compare to figure 5).

Figure 12(A) and 12(B) show the nonstationary convolution matrix for the minimum
phase and the zero phase cases respectively. The broadening of the convolutional
wavelet with increasing time is clearly evident in both.
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 Fig. 12. (A) is the time domain nonstationary convolution matrix for the minimum
phase filter design of figure 10. (B) is similar except that a zero phase spectrum was
used. When either matrix multiplies a seismic trace, the result is a time variant filtered
trace. (Compare to figure 3.)

Figure 13 presents the results of applying the filters to a sparse comb of samples of
alternating sign. In addition to the minimum phase and zero phase cases, a result with
linear phase variation, from 0 degrees at time 0 to 90 degrees at 1 second, is also
shown. Fourier wrap around of the non-causal filters is also evident.
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Though the filters in figure 13 obviously are nonstationary, it is not immediately
evident that they have the desired spectral shape. Figure 14 shows a time variant
amplitude spectrum computed from one of the results (they all have the same amplitude
spectrum) and, when compared with figure 10(A), and provides the desired
confirmation. Figure 14 was computed using a "short time Fourier transform"  (or
"windowed Fourier transform", see Kaiser (1994) for a discussion) with a window
length of .3 seconds and a window overlap of 95%. The notches in the spectrum are
caused by the spikes of the input comb function.

Comparison of nonstationary convolution and combination

The separation of convolution into two distinct forms when extended to
nonstationary signals may be regarded as arising from the dual nature of the Toeplitz
symmetry of the stationary convolution matrix (equation 3). As remarked previously
the impulse response of the stationary filter can be found in each column of the matrix
or, in time reverse, in each row. Nonstationary convolution and combination amount to
choosing to preserve the impulse response in the columns or (its time reverse) in the
rows. It follows that, given a nonstationary convolution matrix such as those shown in
figure 12, the matrix which achieves nonstationary combination can be formed by
transposing and then, in each row, flipping the order of samples about the diagonal.
Since the multiplication of a time series by either matrix can be considered to be a scaled
superposition of the columns of the matrix, nonstationary combination cannot
correspond to the scaled superposition of filter impulse responses. However, since
both processes have stationary convolution as their limiting form, it is expected that the
differences will be slight for quasi-stationary filters.

Phrases such as "minimum phase combination" do not have quite the same meaning
as "minimum phase convolution". In the latter case, it is true that each sample of the
input trace was replaced by a waveform which was minimum phase.  In the former
case, this cannot be precisely true and all that can be said is that the filter design
function was formed with minimum phase wavelets.

Following on the previous example, figure 15 shows a comparison between these
two forms. That is, the filter of figure 10 was applied to the comb function of figure
13(A) using both convolution and combination.

Comparing figure 15(A) with 15(B) and then 15(D) with 15(E) it can be seen that
combination and convolution are visually similar for this quasi-stationary filter. The
zero phase results show a smaller difference than the minimum phase results since the
minimum phase filter is less stationary. (See figure 11). For times greater than 1.0
seconds, both filters were stationary and the difference traces are zero.
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A: input comb

B: minimum phase

D: linear phase
variation

0 0.5 1 1.5 2 2.5
time ( seconds)

C: zero phase

Fig. 13. Several results of the application of time variant filters to an input "comb function" (A)
are shown. The minimum phase result (B) used the filter design of figure 10. The zero phase
result  (C) used the amplitude spectrum from figure 10 with a zero phase spectrum. The linear
phase result (D) used the same amplitude spectrum with a phase shift that varied linearly from
0 degrees at time zero to 90 degrees at 1 second.
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Fig. 14. Is a time variant amplitude spectrum computed from one of the filtered traces in figure
13. It was computed using a "short time Fourier transform" with a .3 second window and 95%
overlap between windows. Comparison with figure 10 shows that the design spectrum was
achieved.
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D: minimum phase
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F: difference D-E
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A: zero phase
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C: difference A-B
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Fig. 15. A comparison of nonstationary convolution (equation 8) and nonstationary
combination (equation 9) as applied to the comb function of figure 13. (A) and (B) applied the
amplitude spectrum of figure 10(A) with a zero phase spectrum while (D) and (E) applied the
full minimum phase design in figure 10. Both processes have ordinary convolution as their
stationary limit. Though similar, the processes differ more for the minimum phase filter
because it is less stationary.

Figure 16 is an example specifically chosen to contrast convolution and
combination. The filter design contains an abrupt discontinuity in bandwidth at .5
seconds as shown in (A). In (B) is a synthetic reflectivity with a sequence of large
spikes placed around the time of the filter discontinuity. 15(C) is a minimum phase
convolution of (A) with (B) and 15(D) is a minimum phase combination. Their
difference is shown in 15(E) and is quite dramatic from .5 to .6 seconds. Also a close
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inspection of (C) and (D) near .5 seconds shows that the latter changes apparent
frequency content abruptly at .5 seconds while the former does so gradually.
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Fig. 16. A comparison of nonstationary convolution (equation 8) and combination (equation 9)
for an abruptly changing filter. (A) is the amplitude spectrum used (the discontinuity is at .5
seconds), (B) is a reflectivity sequence to be filtered, (C) is a minimum phase convolution of
(A) with (B), (D) is a minimum phase combination, and (E) is the difference of (D) from (C).

Though nonstationary combination is not the direct scaled superposition of the filter
impulse response, its ability to change the spectrum discontinuously with time makes it
a potentially useful data processing tool. This does not violate the uncertainty principle



Margrave

19-24 CREWES Research Report — Volume 8 (1996)

in any way since that principle  is an inequality governing the widths of a temporal
function and its Fourier dual. In this context, the uncertainty principle merely places
limits upon our ability to measure the spectral discontinuity after-the-fact with local
Fourier spectra.

CONCLUSIONS

Nonstationary filtering can be formulated as a natural extension of stationary
convolution. The concept of a time-invariant impulse response is generalized to that of a
two dimensional impulse response function where one dimension is the time of the
impulse response and the other is the time of the impulse. The nonstationary filter can
be applied digitally by forming the nonstationary convolution matrix which has in each
column the impulse response for the column time delayed to start at the main matrix
diagonal.

This generalization of convolution also gives rise to an alternative nonstationary filter
which is called here nonstationary combination. The major difference between
convolution and combination is that the former prescribes the nonstationarity as a
function of input time while the latter uses output time. Nonstationary combination does
not correspond to a scaled superposition of filter impulse responses but is capable of
achieving arbitrarily abrupt spectral changes in the output signal. Both processes have
stationary convolution as their limiting form and so are quite similar for quasi-stationary
filters.

Both nonstationary convolution and combination may be moved into the Fourier
domain where they are also nonstationary matrix operations. The nonstationary spectral
matrix, which achieves nonstationary convolution in the Fourier domain, is formed
from the 2-D Fourier transform of the generalized impulse response function. When the
impulse response function is stationary, its 2-D Fourier transform yields a frequency
connection function which is a Dirac delta function times the filter spectrum. This
results in a diagonal nonstationary spectral matrix with the stationary filter spectrum
along the diagonal. Multiplication of a signal spectrum by such a diagonal matrix
achieves stationary convolution, as expected from the convolution theorem. A general
nonstationary spectral matrix contains off-diagonal power which describes the temporal
variation of the filter. The stronger the nonstationarity, the broader the band of
significant power about the diagonal.

Both processes may also be applied in a mixed time-frequency domain.
Nonstationary convolution becomes a generalized forward Fourier integral of the
product of the input time domain signal and the nonstationary filter which yields the
spectrum of the filtered signal. Nonstationary combination is recast as a generalized
inverse Fourier integral of the spectrum of the input signal times the nonstationary filter
to yield the time domain filtered signal.
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APPENDIX: MATHEMATICAL DETAILS

The Fourier domain formulation for nonstationary convolution

Equation (8) is repeated here as

  
g(t) = a(t – τ,τ) h(τ) dτ

– ∞

∞

(A-1)

The spectrum, G(f), of g(t) is computed by the forward Fourier transform of (A-1)

  

G(f) = g(t)e–2π i f tdt
– ∞

∞

= a(t – τ,τ)h(τ)dτ
– ∞

∞

e–2π i f tdt
– ∞

∞

(A-2)

The next step is to reverse the order of integration in (A-2). Strictly speaking, this
requires some justification. For integrals with non-infinite limits, a double integral over
a rectangular region can have its integration order interchanged provided only that the
integrand is continuous (see any calculus text, for example Courant and John, 1974,
(Vol. II page 398) ). In improper integrals such as the 2-D Fourier transform, more
consideration is required. Korner (1988) gives the general conditions under which the
order reversal may be justified (his theorem 48.8) and these amount to requiring that the
integrand is continuous, that both one dimensional transforms of the absolute value of
the integrand are continuous, and that the 2-D transform itself converges absolutely. Of
course, if the integrand has only compact support, then the infinite limits may be
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replaced by finite ones and the conditions are relaxed. All of the theory in this paper
assumes that these conditions have been met in one way or the other. (Note that similar
integration reversals are required to prove the Fourier transform theorem and the
convolution theorem. For example see Korner (1988) or Morse and Feshbach (1953). )
Therefore, reversing the order of integration in (A-2) gives

  
G(f) = h(τ) a(t – τ,τ)e–2π i f tdt

– ∞

∞

dτ
– ∞

∞

(A-3)

The term in brackets is the Fourier transform (over the columns) of the delayed
nonstationary impulse response matrix. The nonstationary filter can be moved entirely
into the Fourier domain by substituting for   h(τ)  in (A-3) its expression as an inverse
Fourier transform of its spectrum H(F)

  
h(τ) = H(F)e2π i F τdF

– ∞

∞

(A-4)

When this result is substituted into (A-3) and the order of integrations is again changed,
we have

  
G(f) = H(F) λ(f,F) dF

– ∞

∞

(A-5)

where

  
λ(f,F) = a(t – τ,τ)e–2π i f te2π i F τdt dτ

– ∞

∞

(A-6)

Equation (A-6) can be rewritten by letting   u = t – τ, du = dt, t = u + τ  to give

  
λ(f,F) = a(u,τ)e–2π i f ue–2π i ( f – F ) τdu dτ

– ∞

∞

(A-7)

Define the 2-D Fourier transform of the nonstationary impulse response function,
a(u,v), as in equation (13) which is repeated here

  
A(p,q) = a(u,v) e–2π i p ue–2π i q vdu dv

– ∞

∞

(A-8)

Comparing (A-7) and (A-8) yields

  λ(f,F) = A(f,f – F) (A-9)

So (A-5) becomes

  
G(f) = H(F) A(f,f – F) dF

– ∞

∞

(A-10)

This is equation (10).
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The Fourier domain formulation for nonstationary combination

The derivation of equation (14) proceeds along similar lines except we begin with
equation (9) instead of (8). Corresponding to equations (A-5), (A-6), and (A-7) are the
following

  
G(f) = H(F) λ(f,F) dF

– ∞

∞

(A-11)

  
λ(f,F) = a(t – τ,t)e–2π i f te2π i F τdt dτ

– ∞

∞

(A-12)

and, letting   u = t – τ, du = dτ, τ = t – u

  
λ(f,F) = a(u,t)e–2π i ( f – F ) te– 2π i F udt du

– ∞

∞

(A-13)

Comparing (A-13) and (A-8) results in

  λ(f,F) = A(F,f – F) (A-14)

so we finally get

  
G(f) = H(F) A(F,f – F) dF

– ∞

∞

(A-15)

which is equation (14).

The mixed domain formulation of nonstationary convolution

This result proceeds directly from (A-3) which can be rewritten as

  
G(f) = γ(f,τ) h(τ) dτ

– ∞

∞

(A-16)

where

  
γ(f,τ) = a(t – τ,τ) e–2π i f tdt

– ∞

∞

(A-17)

letting   u = t – τ, du = dt, t = u + τ  gives

  
γ(f,τ) = e–2π i f τ a(u,τ) e–2π i f udu

– ∞

∞

(A-18)

The nonstationary transfer function is defined as the Fourier transform over the first
temporal coordinate (i.e. u) of the nonstationary impulse response function a(u,v) as in
equation (19) which is repeated here

  
α(p,v) = a(u,v) e–2π i p udu

– ∞

∞

(A-19)

Comparing (A-18) and (A-19) gives
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  γ(f,τ) = e–2π i f τα(f,τ) (A-20)

Substitution of this into (A-16) gives

  
G(f) = α(f,τ) h(τ) e–2π i f τdτ

– ∞

∞

(A-21)

This is equation (17).

The mixed domain formulation of nonstationary combination

We begin with equation (9) which is repeated here

  
g(t) = a(t – τ,t) h(τ) dτ

– ∞

∞

(A-22)

Now substitute equation (12), which expresses h(τ) in terms of its spectrum H(F), into
(A-22) to get

  
g(t) = a(t – τ,t) H(F) e2π i F τdF

– ∞

∞

dτ
– ∞

∞

(A-23)

changing the order of integration results in

  
g(t) = γ(F,t) H(F) dF

– ∞

∞

(A-24)

where

  
γ(F,t) = a(t – τ,t) e2π i F τdτ

– ∞

∞

(A-25)

let   u = t – τ, du = – dτ, τ = t – u  in (A-25)

  
γ(F,t) = e2π i F t a(u,t) e–2π i F udu

– ∞

∞

(A-26)

Comparison of (A-26) and (A-19) gives

  γ(F,t) = e2π i F t α(F,t) (A-27)

When this result is substituted into (A-24), it becomes

  
g(t) = α(F,t) H(F) e2π i F t dF

– ∞

∞

(A-28)

This is equation (18).


