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Zero offset seismic resolution theory for linear v(z)

Gary F. Margrave

SUMMARY

From the perspective of f-kx migration theory, the optimizing the ability of seismic
data to resolve earth features requires maximization of the spectral bandwidth after
migration. The kx (horizontal wavenumber) bandwidth determines the lateral resolution
and is directly proportional to the maximum frequency and the sine of the maximum
scattering angle and inversely proportional to velocity. Constraints on the maximum
scattering angle can be derived by examining the three effects of finite spatial aperture,
finite recording time, and discrete spatial sampling. These effects are analyzed,
assuming zero-offset recording, for the case of a linear (constant gradient) v(z)
medium. Explicit analytic expressions are derived for the limits imposed on scattering
angle for each of the three effects. Plotting these scattering angle limits versus depth
limits for assumed recording parameters is an effective way to appreciate their impact
on recording. When considered in context with f-k migration theory, these scattering
angle limits can be seen to limit spatial resolution and the possibility of recording
specific reflector dips. Seismic surveys designed with the linear v(z) theory are often
much less expensive than constant velocity theory designs.

INTRODUCTION

Seismic line length and maximum record time place definite limits on the maximum
scattering angle that can be recorded, and hence imaged, on a migrated zero offset
section. Since horizontal resolution depends directly on the sine of the maximum
scattering angle (Vermeer, 1990 and many others), it is important to understand these
effects for survey design and interpretation. Furthermore, the observation of a normal
incidence reflection from a dipping reflector requires having a scattering angle spectrum
whose limits exceed the reflector dip.

The imposition of finite recording apertures in space and time actually imprints a
strong spatial-temporal variation (i.e. nonstationarity) on the spectral content of a
migrated section. As an example, consider the synthetic seismic section shown in
Figure 1a. This shows a zero offset (constant velocity) simulation of the response of a
grid of point scatterers (diffractors) distributed uniformly throughout the section. Note
how the diffraction responses change geometry and how the recording apertures
truncate each one differently. Figure 1b is a display of the f- kx amplitude spectrum for
this section. As expected from elementary theory, all energy is confined to a triangular
region defined by |kx|<f/v (kx is horizontal wavenumber, f is temporal frequency, and v
is velocity).

Figure 2a shows this section after a constant velocity f-k migration and Figure 2b is
the f- kx spectrum after migration. The spectrum shows the expected behavior in that
the triangular region of Figure 1b has unfolded into a circle. Essentially, each frequency
(horizontal line in Figure 1b) maps to a circle in Figure 2b (see Chun and Jacewitz,
1981 for a discussion). Note that f-k migration theory as usually stated (Stolt, 1978)
assumes infinite apertures while close inspection of the focal points in Figure 2a shows
that their geometry varies strongly with position.

The four focal points shown boxed in Figure 2a are enlarged in Figure 3a.
Considering the focal points near the center of the spatial aperture, a small, tight focal
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point at the top of the section grades to a broad, dispersed smear near the bottom.
Alternatively, assessing at constant time shows the focal points grading from strongly
asymmetric-left through symmetric to asymmetric-right. Figure 3b shows local f- kx
spectra of the four focal points in Figure 3a. Comparing with Figure 2b shows that
these local spectra are dramatically different from the global spectrum. Only the top-
center point has the full circular spectrum expected from the infinite aperture theory
while the others show strong asymmetry or severe bandwidth restrictions. These local
spectra determine the local resolution characteristics of the aperture limited seismic
section. Schuster (1997) gives a formal theory (assuming constant velocity) for these
focal points and shows that the local spectra are bounded by scattered rays that extend
from the scatter point to either side of the section. This current paper shows how to
estimate these scattering angles in a realistic setting and therefore how to assess
resolution implications.

For constant velocity, the computation of limiting scattering angles is well
understood but this approach often results in overly expensive survey designs. An
analysis with a constant velocity gradient is much more realistic as it allows for first
order effects of ray bending by refraction. Such an analysis is presented here together
with a simple graphical method of assessing the results.

THEORY

Stolt (1978) established f-k migration theory for the post-stack, zero-offset case. A
fundamental result is that constant velocity migration is accomplished by a mapping
from the (kx,ω) plane to the (kx,kz) plane as illustrated in Figure 4. As can be deduced
from the figure, the kx bandwidth after migration is limited by:

  
k x lim = k x maxsin θmax =

2fmaxsin θmax

v
  . (1)

In this expression, kxmax is the limiting wavenumber to be expected from a migration
with no limitation on scattering angle. In any practical setting, there is always a limit on
scattering angle and it is generally spatially variant. The limit may be a result of the
effects of finite aperture, finite record length, and discrete spatial sample size or any of
many other possibilities including: the migration algorithm may be “dip limited”, lateral
or complex vertical velocity variations can create shadow zones, attenuation effects are
dependent on raypath length and hence affect the larger scattering angles more.
Whatever, the cause, a limitation of the range of scattering angles which can be
collected and focused to a particular point translates directly into a resolution limit as
expressed by equation (1). The size of the smallest resolvable feature, say δx,  is

inversely proportional to kxlim. For definiteness, let kxlim = α/(2δx), where α is a

proportionality constant near unity, and solve for δx to get:

  
δx =

α v

4fmaxsin θmax
 . (2)

Since the aperture limit is x and z variant (and record length and spatial aliasing limits
are z variant) δx must also vary with position. An interpretation of equation (2) is that it
gives the smallest discernible feature on a reflector  whose dip is normal to the bisector
of the scattering angle cone at any position (Figure 5).
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For constant velocity, the limits imposed on zero-offset scattering angle are easily
derived using straight ray theory and have been shown (Lynn and Deregowski, 1981)
to be:

  
tan θA =

A
z   , (3)

  
cos θT =

vT
2z   . (4)

In these expressions, A is the available aperture, T is the record length, z is depth, and
v is the presumed constant velocity. θA and θT are limitations on scattering angle
imposed by aperture and record length respectively (Figure 5). Aperture is defined as
the horizontal distance from an analysis point to the end of the seismic line or the edge
of a 3-D patch and is thus dependent on azimuth and position (Figure 6). Alternatively,
the record length limit has no lateral variation. Taken together, these expressions limit
the scattering angle spectrum to a recordable subset.

A third limiting factor is spatial aliasing which further constrains the possible
scattering angle spectrum to that which can be properly imaged (migrated). (Liner and
Gobeli, 1996 and 1997, give an analysis of spatial aliasing in this context.) The
Nyquist requirement is that there must be at least two samples per horizontal
wavelength to avoid aliasing:

  λx ≥ 2∆x where λx =
λ

sin θx
  . (5)

Here, ∆x is the spatial sample size (cdp interval), λ and λx are wavelength and its

apparent horizontal component, and θx is most properly interpreted as the emergence
angle of a dipping event on a zero offset section. Consistent with zero offset migration
theory, the exploding reflector model (Lowenthal et al., 1976) can be used to relate
wavelength to velocity through λ = v/(2f) where f is some frequency of interest. This
leads to an angle limited by spatial aliasing given by:

  
sin θx =

v
4f∆x

  . (6)

In the constant velocity case, the emergence angle of a ray and the scattering angle at
depth are equal and thus equation (6) expresses the constant velocity limit on scattering
angle imposed by spatial aliasing. For vertical velocity variation, v(z), the result still
applies provided that θx is simply interpreted as emergence angle and v as near surface
velocity. The emergence angle can be related to the scattering angle at depth using
Snell’s law. This is done by recalling that the ray parameter, p = sin(θ(z))/v(z), is
conserved (Slotnick, 1959), which leads to

  
sin θx =

v(z)
4f∆x

  . (7)

This expression generalizes spatial aliasing considerations to monotonically increasing
but otherwise arbitrary v(z) and θx is interpreted as the scattering angle from depth, z.
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Returning to constant velocity, equations (3), (4), and (6) can be used to create a
scattering angle resolution chart for an assumed recording geometry, position on the
line, frequency of interest and constant velocity. A typical case is shown in Figure 7
where it is seen that the aperture limit is concave upward and tends asymptotically to
zero at infinite depth. The record length limit has the opposite curvature and reaches
zero degrees at the depth z = vT/2. Both limits admit the possibility of 90° only for z=0.
The spatial aliasing limit is depth independent but requires a frequency of interest which
can conservatively be taken as the maximum (not dominant) signal frequency.

Charts such as Figure 7 can be used as an aid in survey design but tend to give
unrealistic parameter estimates due to the assumption of straight raypaths. In most
exploration settings, velocity increases systematically with depth and thus raypaths
bend upward as they propagate from the scatterpoint to the surface. Intuitively, this
should lead to shorter aperture requirements and allow the possibility of recording
scattering angles beyond 90° in the near surface. The spatial aliasing limit has already
been discussed in this context and the aperture and record length limits will now be
derived exactly for the case of a constant velocity gradient, that is when v(z) = vo + cz.
The derivation requires solution of the Snell’s law raypath integrals for the linear
gradient case (Slotnick 1959). If pA is the ray parameter required to trace a ray from a
scatterpoint to the end of the spatial aperture, then

 

A z =
pAv(z)

1 – pA
2

v(z)2
dz

0

z

 . (8)

Similarly,  let pT be the ray parameter for that ray from scatterpoint to the surface which
has traveltime (two-way) equal to the seismic record length, then

 

T z =
1

v(z) 1 – pT
2
v(z)2

dz

0

z

 . (9)

These integrals can be computed exactly, letting v(z) = vo + cz, to give

 
A =

1
pAc

1 –pA
2

v0
2

– 1 –pA
2

v(z)2
  , (10)

and

 

T =
2
c

ln
v(z)
v0

1 + 1 –pT
2
v0

2

1 + 1 –pT
2
v(z)2   . (11)

Equations (10) and (11) give spatial aperture, A, and seismic record length, T, as a
function of ray parameter and velocity structure.

Letting pA = sin(θA(z))/v(z) and pT = sin(θT(z))/v(z), equations (10) and (11) can
both be solved for scattering angle to give
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sin2 θA =

2Acv0γ 2

A2c2 + v0
2

2
γ4 + 2v0

2γ2 A2c2 – v0
2

+ v0
4

  , (12)

and

  
cos θT =

γ– 1 – cosh (cT / 2)
sinh (cT / 2)   , (13)

where  
  

γ =
v0

v(z)   .

When equations (9), (11), and (12) are used to create a scattering angle resolution
chart, the result is typified by Figure 8. The parameters chosen are the same as for
Figure 6 and the linear velocity function was designed such that it reaches 3500 m/s
(the value used in Figure 7) in the middle of the depth range of Figure 7. It can be seen
that the possibility of recording angles beyond 90° is predicted for the first 1000 m and
the aperture limit is everywhere more broad than in Figure 7. The record length limit
forces the scattering angle spectrum to zero at about 3700 m compared to over 5000 m
in the constant velocity case. This more severe limit is not always the case, in fact a
record length of 6 seconds will penetrate to over 12000 m in the linear velocity case and
only 10500 m in the constant case. Also apparent is the fact that the spatial aliasing limit
predicts quite severe aliasing in the shallow section though it gives exactly the same
result at the depth where v(z) = 3500 m/s.

EXAMPLES

Figures 9, 10, and 11 provide further comparisons between the linear v(z) theory
and constant velocity results. In Figure 9, the aperture limits are contrasted for the same
linear velocity function (v = 1500 +.6 z m/s) and constant velocity (v 3500 m/s) used
before. The dark curves show the linear velocity results and the light curves emanating
from  90° at zero depth are the constant velocity results. Each set of curves covers the
range of aperture values (from top to bottom): 1000, 4000, 12000, and 20000 meters.
The dramatic effect of the v(z) theory is especially obvious for larger apertures which
admit angles beyond 90° for a considerable range of depths. Figure 10 is similar to
Figure 9 except that the record length limit is explored. For each set of curves, the
record lengths shown are (from top to bottom): 2.0, 4.0, 6.0, and 8.0 seconds. Figure
11 shows spatial aliasing limits for a frequency of 60 Hz and a range of ∆x values
(from top to bottom): 10 20 40 60 80 100 and 150 meters.

Next consider Figure 12 which shows a synthetic demonstration of the aperture
effect. Here, a number of unaliased point diffractor responses have been arranged at
constant time. Thus the record length limit is constant and the aliasing limit does not
apply. When migrated, the resulting display clearly shows the effect of finite spatial
aperture on resolution. Comparison with Figure 6 shows the direct link between
recorded scattering angle spectrum and resolution. Approximately, the focal points
appear as dipping reflector segments oriented such that the normal (to the segment)
bisects the captured scattering angle spectrum.

Figure 13 is a study designed to isolate the effects of temporal record length on
resolution. The unmigrated section is constructed such that all five point diffractors are
limited by record length and not by any other effect. Upon migration, the focal points
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are all symmetric about a vertical axis but show systematic loss of lateral resolution
with increasing time. As shown in Figures 7, 8, and 10, the record length limit always
forces the scattering angle spectrum to zero at the bottom of the seismic section.
Equation 2 then results in a lateral resolution size that approaches infinity. This effect
accounts for the often seen data ‘smearing’ at the very bottom of seismic sections.

Figure 14 shows the migration of a single diffraction hyperbola with three different
spatial sample intervals to illustrate the resolution degradation that accompanies spatial
aliasing. In Figure 14B, the migration was performed with a spatial sample rate of 4.5
m which represents a comfortably unaliased situation. In Figures 14C and 14D the
sample intervals are 9 m (slightly aliased) and 18 m (badly aliased). The slightly aliased
situation has not overly compromised resolution but the badly aliased image is highly
degraded. Note that the vertical size of the image is unaffected.

In Figure 15, the effect of maximum temporal frequency is examined. A single
diffraction hyperbola was migrated with three different maximum frequency limits . In
Figure 15B, the focal point and its local f-kx spectrum are shown for an 80 Hz
maximum frequency while Figures 15C and 15D are similar except that the maximum
frequency was 60 Hz and 40 Hz respectively. It is clear from these figures that limiting
temporal frequency affects both vertical and lateral resolution. As expected from
equation (2), a reduction of fmax from 80 Hz to 40 Hz causes a doubling of the focal
point size.

Finally Figure 16 is a simple resolution simulation using equation (2) with the
constant a set to unity and the scattering angle spectrum computed using the constant
velocity limiting equations (3) and (4). Comparison of 16A) with Figure 2A) and 16B)
with Figure 3A) shows a reasonable, if simplistic, agreement. This merely shows that
the simple resolution concepts given here go a long way towards explaining the spatial
variation of resolution beneath a seismic survey. In a practical setting, it is
recommended that actual wave equation diffraction synthetics be generated and
migrated or that the constant velocity  migration Green’s function of Schuster (1997) be
used.

CONCLUSIONS

The theory of f-kx migration predicts a simple model for the resolving power of seismic
data. The result is a spatial bandwidth that depends directly on frequency and sine of
scattering angle and inversely on velocity. Finite recording parameters (aperture and
record length) place space and time variant limits on the observable scattering angle
spectrum. Thus the resolution of a seismic line is a function of position within the
aperture of the line. The scattering angle limits imposed by aperture, record length, and
spatial sampling can be derived exactly for the case of constant velocity and for velocity
linear with depth. The linear velocity results are more realistic and lead to considerably
different, and usually cheaper, survey parameters than the constant velocity formulae.
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Fig. 1. A) A constant velocity synthetic seismic section constructed from a grid of point
scatterers assuming zero offset recording geometry. B) f-kx spectrum of the section in A.
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Fig. 2. A) Result from f-kx migration of the synthetic section in Figure 1A. Boxes denote
locations of zoomed images in Figure 3. B). f-kx spectrum of the section in A.
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