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The P-SV conversion point in constant-gradient media
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ABSTRACT

An analysis ofthe computation of thé-SV conversiorpoint for the case of
constant-gradient (velocity increasing linearly with deptiedia ispresentedThe well
known result that raypathsare circulararcs in suchmedia is exploited to derive an
implicit sixth order polynomiafor r, the distancerom the source tothe conversion
point. An exact expression is then obtained for the asymptotic limiting form as depth of
the reflector becomes much larger than the source-receparation.The result is
formally similar to thatfor constantvelocity case except that the ration \ed/vp is
replaced by the ratio of the velocity gradients. It is anticiptitada numericasolution
for the nonasymptotic case will yield more significant departures from constant velocity
theory.

INTRODUCTION

In explorationgeophysics, for aignificant range oflepth,the velocity increases
approximately linearly witldepth.Slotnick (1959) statethat “experiencdiasshown
that the velocity of seismievave propagation in Tertiarpasins can be closely
approximated by expressing it as a linear function of depth”.

The use of aconstant-gradient velocity function yields maecurateresults than a
constant-velocity function while maintaining the eleganceerpressions and the
mathematical ease of manipulations. It also removes a confining assumption of straight
rays. The introduction of curvedays isimportant in consideringhe location of the
reflection point and the angles of incideneeg., in AVO/AVA studies. The
consequences of curved raypa#ing particularly important in thstudy of converted
waves due tasymmetry introduced by different functions describlogvngoing and
upgoing rays.

This paper provides amplicit analytic equationfor the reflection point of a
converted raypath between a surface source and a suea@ger and arexplicit
expression for thigeflection point in thdimit a z->o. The method could be easily
extended to the VSP case where the receiver is located in the wellbore. Also, it provides
an analytic method for estimating the angle of incidence.

METHODS AND RESULTS

Geometrical considerations

Consider a reflection from a horizontal interface at debtim an isotropianedium
where velocity has a constant vertical gradient and no lateral variations. The downgoing
wave is subject tahe velocityfield, v, increasing linearly witldepth, z, such that
instantaneous velocity at points
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W(z) =a +bz, (1)

wherea is thespeed athe freesurface and is a positive constant. Ithe plains of
Western Canada the value lof= 0.8 appears to agree well witbxperimental data
(Goodway (1997) pers. comm.). The upgoing wavaulgect to the velocitjield, w,
increasing linearly with deptla, such that instantaneous velocity at paiist

w(z)=c+dz, (2)

wherec is the speed at the free surface dmla positive constanthe ray trajectories
for both downgoing and upgoing waves are circular arcs. The centreafdhlar arc,
C, corresponding tthe trajectory of thelowngoing wave has followingoordinates
(x,z) (Slotnick, 1959, or Krebes 1985),

c@l_m = (3)

where p is the ray paramete(Figure 1). The centre of the circulaarc, D,
corresponding to the trajectory of the upgoing wave has following coordinates (x,z)

|:| 1 2 CD
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Consider the sourc&, with coordinates

$(0,0), (5)
and the receiveR, with coordinates

R(X,0). (6)

(Note that eithersource orreceiver can be locateaway fromthe surface. For
instance, inthe VSP casethe receivewould have a non-zero depth coordinate.,
receiver at depthZ. Hence, there would be another non-zergparameter in the
expressions shown below.)

Let the reflection poinQ, have coordinates
Ar,—H), (7)
wherer is the lateral distance between the sougcand the reflection poin@.
The distanc€Smust be equal t€Q because they ataoth radii ofthe samecircle

and similarly, DR must be equal t®Q. Thoseequalities formthe kernel ofuseful
equations.

Exact equation for conversion point

For algebraicreasons it ismore convenient to equate tlsguares ofthe above
distances. Thus

(cs) =(co), ®)

and
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(DRY =(DOY . (9)
In terms of coordinates one gets

ﬁ%mﬁ+%@z:%m—rﬁ+%+zﬂ, (10)

p
and

LG ] =BTy ]

Both equations (10) and (1Xan besolved for the ray parameterp, to yield
respectively

_ 2r
- \/(Hz +r2X4a2 +4abH +b* (H2 +r2))1

(12)

and
p= 2(r—X)
\/4c2é-l2+(r—X)2)+4cdH(H2 +7? —Xz)+dz(H2 +72 —)(2)2 |

(13)

The ray parametep, is preserved upothne reflectionfrom a horizontal interface.
Thus right-hand sides of equations (12) and 8) beequated. Hencethe only
unknown is the horizontal coordinate,of the reflection poinQ(r, -H). The resulting
algebraic equation

r

_\/(H2 +r2)€la2 +4abH +Z)2(H2 +r2))
(r— X) -0,
J4c2 (1 + ¢ -x) rdcarr(f +r* -x*)+a? (5 +° -x°)

implicitly determines r. It can bsquared andnanipulated to yield an implicgixth
order polynomial in r (see equatigb6)). It can be convenientlgolved numerically.

For instancepne canusethe “FindRoot” command in th&athematical software.
Inserting the appropriate valuerohto equation (12) yields the ray parameggrfrom

which the angle of incidencé, can be easily calculated, i.e.,

(14)

0= arcsin(p(a +bH)). (15)

Asymptotic equation for conversion point

Placingtwo fractions ofequation(14) oneitherside ofthe equalitysign, squaring
both sides of the equation and cross multiplying yields
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rzElcz (H2 +(r —)()2)+4ccz’H(I-12 +7r? —Xz)+dz(H2 +r? —Xz)z] =

(16)
= (r - X)2 (H2 +r2)(4a2 +4abH +b° (H2 +7° ))
Rearranging and equating the limit of both sides one gets,
lim E\c2 (H2 +(r- XY )+4cdH(H2 17 =X2) +d? (H 47 —Xz)z] -
Ho a7)

(r= XY (i +* Yoa® +4abtt +5* (i +r)) =0.

Taking a limit of the expression (17) Bistends to infinity,i.e., at avery largedepth,
yields (after tedious algebra)

d*r* -p (- X) =0. (18)
Solving forr one gets,

X

1:4

r=

(19)

For the P-SV conversion one uses the suthétdenominatorNumerical examples
performed on equation (14) confirm expresdidf). Equation(19) has aimilar form
to the asymptotic equation for the conversion point in constant velocity media, i.e.,

r= X : (20)

1+ vSV
Vp

where v, and v, are shear- and compressional-wave velocities, respectively. The
similarity of form between equatior§&9) and (20)can, perhaps, bexplained by the
fact thatfor a verylarge depth, raysare almoststraight, thusresembling constant-
velocity medium.Thereare, howeversignificant differencesEquation(19) depends
on the velocity’s rate of change, while equation (20) depends on the velocity itself.

DISCUSSION AND CONCLUSIONS

To investigate equatio(ll4) onecan generate a three-dimensional gligure 2)
with horizontal axes corresponding tbe reflectordepth, H, and the horizontal
coordinate,r, of the reflection poinQ(r, -H) The solution, r, corresponds to the
intersection of thesurface generated kihe left-handside of equation(14) and the
horizontal plane arero. One observesthat for large valuesof, H, the value ofr
approaches an asymptote, as expedibd.range of the ratio of values @fandb is
limited. To obey the physical principles of wave propagation one must relatyeor
isotropic media,

0<w(z) < %, (21)

or
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+

0<crdz<T (22)

For very large values d, it implies that
0<d< b (23)

sds—.
or from equation (19)
06X = 2 X <r<X . (24)
2 +1

The same condition applies to constant velocity medium, i.e., the lateral range of the
asymptotic vertical line is the sarfar constant-gradient and constant-velocity media.
Furthermore, it wouldappear that at largdepths, wherdhe asymptotic approach
applies, both asymptotic approaches might yield similar results. A significant difference
would be exhibited in the non-asymptotic approaathich plays critical role for
shallower horizons. Faspecific applications one can compaesults ofthe constant-
gradient approach, i.e., equation (14) to a constant velocity approach, i.e.,

d W+ Jo-ry +m H_
£ L -

er % w E

0, (25)

which is an expression of Fermat’s principle of stationary time whanelw stand for
constant compressional- and shear-wave velocities, yielding

r _ X-r 26
_J 2 > — 32 2 (26)
wWro+ H W-\/(X r”+H

Equation (26) is a quartic equatiorriand thus can always be solved analytically.

From experimental data it iknown that the value of the ratio @bompressional- to
shear-wave velocities can, between sheface and deepéargets,change by an order
of magnitude. In such casesguation(14) should providebetterresults thareither
constant-velocity or asymptotapproach. Particularly, fathe case of largdateral
offsets between source and receiver, encountere 3 data,the proper use of
equation (14) plays a significant role. Further analysig,, AVO/AVA studiescan be
performed more reliably by removing the asymptotic and constabcity
assumptions.

Furthermorethe initial investigationsuggestghat in the constant-gradient case the
function approaches the asymptotic value tdssrapidly than in thesimpler, but less
accurate, constant-velocity approach. This concepts needs to be further investigated. It,
appears, howevethat one shouldcarefully perform error analysis whilesing an
asymptotic approximation in constant-gradient approach for moderately deep targets.
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FIG. 1. lllustration of parameters for converted wave scenario in a constant gradient medium.
All ray trajectories are arcs of circles whose centres are above the source-receiver surface.
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FIG. 2. Intersection of a surface with the horizontal plane corresponding to the solution for r of
equation (14). The downgoing wave is subjected to the velocity field defined by Wz) =
2,000+0.8z, while the upgoing wave is subjected to the velocity field defined by w2 =
1,000+0.6z. The horizontal source-receive offset, X = 3,000. The depth, H, varies between 0
and 10,000. Note that the application of given linear velocity functions is a subject to a
condition W(2)> v2w(2). This implies that the fundamental physical property derived from
Poisson’s ratio (o O [0, 0.5]), which is apparent in the ratio of compressional- and shear-wave
velocities, is satisfied for z< 12,070 metres.
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