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Finite difference modelling, Fourier analysis, and stability

Peter M. Manning and Gary F. Margrave

ABSTRACT
This paper uses Fourier analysis to present conclusions about stability and

dispersion in finite difference modelling. The most elementary finite difference model
is presented, one dimension in space with second order accuracy in space and time.
For this one spatial dimension case formulae are derived to correct for the dispersion
caused by finite grid sampling. The conclusions drawn are compatible with other
discussions of stability in one dimension.

INTRODUCTION
There has been much work done on the stability of finite difference algorithms. In

the literature on seismic modelling, examples can be found in Aki and Richards
(1980), and Lines et al (1998). These studies usually follow the Von Neumann
approach with direct use of the wave equation.

The approach outlined here is to make a direct Fourier analysis of the finite
difference method. A single frequency wave is operated upon by the sequence of
steps required to obtain a single finite difference time step, and this is compared to the
continuous case. The continuous case is then used as a standard, and the adjustment
required to make the finite difference step equal to the continuous case is regarded as
a correction.

THEORY
The basic wave equation in one dimension can be written in the form:
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If the solution is limited to a particular wave number k and frequency ω, and the
sine function is chosen to represent the harmonic component, then:
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This shows that the continuous solution has no attenuation or dispersion and requires
only that v = ω/k.

The finite difference second derivative in x (omitting the t dependence for brevity)
can be specified as:
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where the two adjacent first finite differences are subtracted and divided by ∆x to
obtain a second order finite difference. In the appendix it is shown that this leads
directly to:
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Comparison of equations 2) and 5) shows that the continuous and finite difference
second derivatives in x are related by:

cont
2

2
2

fd
2

2

x
kx

2
xkc

x
kx







∂

∂





 ∆=





∂

∂ ))(sin(sin))(sin(
. (6)

Similarly, the second derivatives in time are related by:

cont
2

2
2

fd
2

2

t
t

2
tc

t
t







∂

ω∂





 ∆ω=





∂

ω∂ ))(sin(sin))(sin(
. (7)

To step a wave field in time by the finite difference method we can begin with a
time version of equation A2):
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This expression may be turned around to get:
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Substituting formula 7) gives:
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Substituting formula 1) gives:
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and using 6) gives:
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Expanding the finite difference derivative using formula A2) gives the final
expression:
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It is required that wave numbers and frequencies be related by kv=ω, so in order to
bring the third term on the right hand side of 13) entirely to wave numbers, the
substitution may be made to get:
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This is an improvement over the usual second order finite difference time stepping
equation because the ratio of squared sinc functions makes it exact for a particular
frequency/wave number. The usual expression corresponds to setting this ratio to
unity. Therefore this ratio can be regarded as a correction factor to be applied after
spatial differencing to make the time stepping exact.

APPLICATION – STABLE CONDITIONS
The normal one spatial dimension finite difference equation is stable where

∆t<∆x/v, or ω∆t<k∆x. The effect of the correction factor can be qualitatively
investigated under these conditions.

An analysis of the correction factor requires an understanding of the sinc function,
shown in Figure 1. It is symmetric about zero and takes the shape of a tapered sine
wave at positive values except at zero where the function is 1. The largest wave
number normally used is the Nyquist wave number given by π/∆x, so that sinc(k∆x/2)
becomes sinc(π/2), or half way to the first zero of the function. For normal sampling
ranges then, the function is always greater than zero and drops off from 1
monotonically in a positive or negative direction. A larger argument means the value
of the function is smaller.
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 Under stable conditions the argument of the upper sinc function is less than the
argument of the lower one, so the value of the upper sinc function is greater than the
value of the lower one and the correction factor is greater than one. Omission of the
correction factor means that the function at an advanced time is less than it should be.
Continual stepping with this factor leads to exponential decay, with the higher
frequencies decaying faster. All frequencies remain bounded under these conditions,
consistent with the stability assumptions made above.

An alternative way to view the correction factor is to lump it in with the velocity to
get a new ‘pseudo’ velocity (frequency dependent). Note that in the stable case the
correction factor is greater than one, the ‘pseudo’ velocity is greater than the real
velocity, and use of the real velocity will result in propagation at less than realistic
rates. This lower rate has been labeled the ‘uncorrected’ velocity. Higher frequencies
will propagate at velocities lower than low frequencies and therefore show numerical
dispersion.

It is not obvious whether the correction factor should be absorbed into new
‘pseudo’ velocities, or result in reduced amplitudes. Model tests seem to indicate that
either or both may result.

Modelling tests
Some tests have been carried out to assess the prediction value of the theory given

above. Figure 2 shows a spatial wavelet with a very limited bandwidth (equivalent to
a frequency of 60 Hz) in a model with a spatial Nyquist equivalent to 100 Hz.
(Frequencies close to Nyquist are required to see significant effects). The wavelet was
propagated through a model where ∆t=∆x/v, and therefore the correction factor is
exactly one. The initial wavelet is on the left and the wavelet was propagated to the
right. Note the maximum amplitudes at 1500.

The result above can be compared to the example in Figure 3 where the same
wavelet was propagated through twice as many time steps at half the sample rate
without using the correction factor. The maximum amplitudes of the propagated
wavelet appear here at about 1400. The lesser distance covered (the slower velocity)
is obvious in a qualitative sense and is consistent with the explanation above.

Figure 4 plots the distance covered by the same wavelet under the conditions of
Figure 3. The results at each time step are plotted as determined by a correlation
algorithm. Also plotted are the material velocity and the ‘uncorrected’ velocity above.
It is apparent that the ‘uncorrected’ velocity is more representative of the actual
propagation. The ‘chatter’ on the curve seems to be an artifact of the correlation
process.

Figure 5 is equivalent to Figure 4 except that the correction factor for a frequency
of 60 Hz has been applied at each finite difference step. The correlation results follow
the material velocity curve exactly except for the correlation artifacts.
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APPLICATION – UNSTABLE CONDITIONS

The normal finite difference equation is unstable where ∆t>∆x/v, or ω∆t>k∆x. The
effect of the correction factor under these conditions can also be investigated in
qualitative and experimental ways.

With the above condition the correction factor is less than one, and its omission
could lead to exponential growth instead of decay. Higher frequencies would grow
more than lower frequencies, and the Nyquist frequency would grow most of all. This
fits with the observations of models under unstable conditions, where the growth in
amplitude of the high frequencies is very apparent.

Another factor which seems to play a role in the unstable region is the effect of
insufficient sampling. A digitized wave must be adequately sampled in both space
and time to propagate properly. The maximum frequency which can be represented at
a sample rate of ∆t is given by:
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The wavenumber which corresponds to this frequency is given by
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Since v∆t>∆x (in the unstable region):
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means that there are a range of possible spatial wave numbers between kmax and
kNyquist which can not propagate properly because they correspond to temporal
frequencies greater than the temporal Nyquist frequency. The fact that these wave
numbers tend to remain stationary combined with the tendency to exponential growth
explains some of the features found in unstable models. Avoiding these conditions
then provides stability conditions equivalent to those in other studies.

Modelling tests
A set of model parameters was chosen to illustrate normally unstable conditions.

In this case the time sample rate was set at .005 seconds, twice the value for stability.
Figure 6 shows the correction factor as a function of spatial wave number, and it is
less than one everywhere as discussed above. This correction factor could be applied
to the Fourier transform of the finite difference spatial calculations.

The Fourier transform of the above function is plotted in Figure 7 (it assumes that
the imaginary components are zero, or the output will be zero phase). The actual
coefficients of this transform are all zero except for the values (.25, .5, .25) centred at
zero spatial shift.
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A broad band wavelet was put into the model with the above parameters and
propagated only four steps in the uncorrected mode. The result is shown in Figure 8.
It shows the original and propagated wavelets at low amplitude at about 400 offset,
and three typical unstable artifacts.

The same wavelet and model were used for the corrected modelling procedure.
The correction was made by convolving the operator of Figure 7 with the result of the
finite difference spatial calculations. The input wavelet and its propagated version
(propagated through 100 steps) are shown in Figure 9. It is clear that the propagation
is visually flawless. Although it is really not legitimate to use the correction factor at
wave numbers that can not propagate properly, the attenuation it causes is sufficient
in this case to eliminate the undesirable side effects.

INSTABILITY IN TWO DIMENSIONS
It seems reasonable to extend the analysis of equations 15), 16) and 17) to two

dimensions to compare with other theories.

2
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gives the relationship between the maximum model wave number and the maximum
wave numbers in the x and z directions.

If we start with the assumption that time frequencies must be great enough to
propagate all wave numbers in the model, then:
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where h is the sample rate in the x and z directions. This is equivalent to the condition
in Lines et al (1998) for two dimensions when the spatial and temporal finite
differences are of the same order.

CONCLUSIONS
Analysis of the finite difference method in the Fourier domain provides useful
insights into why and how instability and dispersion occur.
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In a time stepping algorithm, instability can be seen as caused, at least in part, by
insufficient temporal sampling. This leads to the circumstance where some wave
numbers propagate at aliased temporal frequencies.

Correction factors can be applied which work nearly perfectly in the one dimension
case.

FURTHER WORK
It may be possible to understand better how the correction factor works as an
amplitude modifier or as a velocity modifier.

Application of this method in two spatial dimensions should provide some insights.
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APPENDIX
The derivation of formula 5) from formula 4) is a straightforward use of algebra

and trigonometric identities. The starting point is:
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This is easily modified to:
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A third form of this equation (which is required later in the text) is:
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The following steps follow from A1) using trigonometric formulae and algebra:
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This equation (A8) is the same as equation (5) in the main text.
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Figure 1. The central part of the sinc function. The range of interest for a correction factor is
mainly from –π/2 to π/2.

Figure 2. The single frequency wavelet propagated with no dispersion. (∆t=∆x/v)
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Figure 3: The single frequency wavelet propagated through the same conditions as Figure 2
except with twice as many time steps of half the size. Note lower distance covered.

Figure 4: Offset of the propagated wavelet as determined by correlation. The ‘uncorrected’
velocity represents the offset better than the real velocity.
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Figure 5: Offset of the propagated wavelet with the correction applied. The straight line on the
plot is the real velocity.

Figure 6: Correction factor in wave number space for an unstable model (with the time
sample rate twice as large as it should be).
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Figure 7: Correction factor in space for the unstable model parameters above. These turn out
to be (.25, .5, .25) centred at zero lag.

Figure 8: Uncorrected unstable model, propagated only four steps. The signature of unstable
parameters appears as high frequencies at three places.
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Figure 9: Corrected unstable model, propagated 100 steps. The correction factor (.25, .5, .25)
was convolved at each step with the result of the spatial operation.


