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ABSTRACT
The radial trace transform is a simple mapping of seismic data from the familiar
horizontal distance and travel time (X-T) domain of trace gathers and stacked sections
to the domain of apparent velocity and travel time. The transform has properties that
make it well-suited for such practical applications in seismic processing as wavefield
separation and coherent noise attenuation. We describe here the transform and its
practical implementation, including aliasing considerations, and we demonstrate
linear noise attenuation on both model data and field data using a set of ProMAX
modules which we have developed to apply R-T domain techniques.

Radial trace (R-T) domain  filtering techniques are distinguished by their focus on
localized events in the X-T plane rather than widespread families of events with
common frequency and/or wavenumber characteristics as in F-K (frequency and
wavenumber) domain methods. A number of successive radial trace filter passes can
be applied to X-T trace panels, each pass designed to attenuate one or more specific
events. Furthermore, the radial trace transform can be applied to panels with highly
irregular X intervals, unlike the F-K transform. This makes the radial domain very
attractive for filtering coherent noise on 3-D shot gathers, with their non-linear
distributions of source-receiver offsets, since the data need not be interpolated to a
uniform offset grid prior to filtering, as with F-K filtering.

INTRODUCTION
Geophysicists who are familiar with the radial trace transform usually associate it
with attenuation of multiples (Taner, 1980), (Lamont, et al, 1999), or with migration
and imaging algorithms (Ottolini, 1979). It appeared in the early reports from the
Stanford Exploration Project, but is only sparsely represented in public geophysics
literature compared to integral transforms such as the F-K or τ-p transforms. As with
all 2-D transforms, the motivation for the use of the radial trace transform lies in its
useful rearrangement of geometrical relationships represented in the familiar X-T
plane in which most seismic data are recorded and displayed.   Specifically, the radial
trace transform maps a wavefield into the domain of apparent velocity and travel
time, or, nearly equivalently, takeoff angle and travel time. This mapping makes the
radial trace domain attractive for multiple suppression. In a constant-velocity,
horizontally bounded medium, the raypath of a primary reflection on a constant-
takeoff angle trace coincides with the raypath of the first leg of any simple multiple
on the same trace (Taner, 1980). This ensures that the travel time of the multiple on a
radial trace is an integral multiple of the primary travel time. Also, the angle-
dependent reflectivity of the multiple-producing boundary is the same for the primary
reflection and at least the first bounce of the multiple. The basic assumptions for most
prediction-based multiple rejection algorithms are therefore more nearly satisfied in
the radial trace domain than in the conventional X-T domain.



Henley

CREWES Research Report — Volume 11 (1999)

A feature of the radial trace transform which appears to have been largely neglected
except for an early SEP report (Claerbout, 1983), is the fact that linear events in the
original X-T domain whose apparent velocity and origin nearly match those of one or
more radial traces into which they map have their apparent frequencies dramatically
lowered. An unaliased linear event in X-T whose apparent origin coincides with that
of the radial trace (R-T) transform maps to a small set of DC or near-DC traces in the
radial domain.  Locating the origin of a radial trace transform at or near the source
position of a source gather, therefore,  transfers widespread source-generated noise to
a few radial traces of very low frequency while leaving the hyperbolic reflected
events nearly unaffected.  Coherent noise rejection can hence be accomplished by
low-cut filtering and/or trace scaling in the radial trace domain, and the filtered X-T
panel can be recovered via the inverse radial transform.

This same radial transform feature can be used to affect wavefield separation of a
desired linear mode simply by placing the origin of the transform at the apparent
origin of the mode.  In this case, the application of a low-pass filter in the radial trace
(R-T) domain preserves the desired linear mode while attenuating high-frequency
reflections and similar events, (a process anticipated by Claerbout, pp 45-47 in his
demonstration of the removal of aliasing from ground roll).

Design of R-T filters for linear noise attenuation or linear wavefield separation is
direct and intuitive and is always aimed at specific events, unlike F-K filters, which
attenuate or enhance all events with similar frequency-wavenumber characteristics.
Consequently, an R-T filter may be designed to attenuate a linear event at a particular
apparent velocity while leaving the long-offset limb of a reflected event with the
same apparent velocity unaffected.

METHOD

The radial trace transform
The elementary radial trace transform R is a simple mapping of the amplitudes of
seismic traces S whose co-ordinates are source-receiver offset x (or some other lateral
distance from a single reference point) and two-way travel time t to the new co-
ordinates apparent velocity v and two-way travel time t’. The transform is defined by:

R{S(x,t)} = S’(v,t’), (1)
with the inverse given by:

R-1{S’(v,t’)} = S(x,t), (2)
where

t’ = t;  v = x/t. (3)
A nearly equivalent mapping in terms of two-way travel time and takeoff angle can
be described by:
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t’ = t;  θ = arctan(x/t). (4)
Practically, these two descriptions differ only in the increment of the angular co-
ordinate, which differs significantly only for large v (or θ) . The parameterization in
terms of  velocity is generally more computationally convenient.

Figure 1 is a schematic illustration of the process of mapping a seismic shot gather
from the conventional X-T domain to the radial trace (R-T) domain.  As can be seen
from the figure, each radial trace consists of samples gathered along a linear
trajectory of constant apparent velocity (or angle), using the same sample times as the
original X-T trace samples.  The fact that X-T and R-T domains share the same time
scale is important. This determines the relative duration of an event in the two
domains, where we define duration as the number of samples occupied by an event
waveform on a single trace in either the X-T or R-T domain. Event duration is the
same in both domains only for events parallel to timing lines. An event parallel to
timing lines transforms from X-T to R-T with its frequency content unchanged.
However, an event not parallel to timing lines has a different duration in the R-T
domain than in the X-T domain, being either stretched or compressed, depending
upon the angle the event wavefront makes with R-T trace trajectories.  For an event
whose wavefront is nearly parallel to an R-T trajectory, its duration is greatly
increased in the R-T domain, since the R-T amplitudes will be selected from nearly
the same point of the event waveform on every X-T trace. This effectively stretches
the event duration, thus lowering its apparent frequency.  Conversely, an event whose
wavefront is nearly  perpendicular to an R-T trajectory will have its duration
decreased relative to the X-T traces, and hence its apparent frequency increased in the
R-T domain.

It is evident from figure 1 that many radial trace samples will fall between the
original X-T traces, requiring interpolation of values from the nearest X-T traces.  In
the R-T transform, various interpolation schemes can be chosen, depending upon the
particular R-T application selected.  For the forward and inverse R-T transforms
which we have developed, we have chosen to interpolate parallel to lines of constant
travel time using simple and fast two-point algorithms. Interpolation is discussed
more thoroughly in a companion chapter  (Henley, 1999,1) in this volume.

Figure 2 follows from figure 1 and shows representative radial traces corresponding
to the numbered trajectories across the X-T panel in figure 1. We display only a few
of the R-T traces that would be generated using the set of R-T trajectories in figure 1
so that we may more easily see details. In figure 2 we illustrate the event stretching,
or change of apparent frequency, due to the R-T transform, on a linear event whose
origin and slope make it nearly parallel to some of the R-T trajectories that span it.
Since those trajectories encounter the event at nearly the same point on its waveform
on every X-T trace, the amplitudes they map into the R-T domain will vary only very
slowly with travel time, hence increasing the apparent duration of the event and
lowering its apparent frequency. This is illustrated  by radial traces 1 and 2 in figure
2, which cross the linear event at very small angles. Traces 3, 4 and 5 encounter the
linear event at much larger angles and show correspondingly less stretching for the
linear event. None of the R-T trajectories in figure 1 cross the reflections at small
angles, so the reflection duration, and thus their frequency content is relatively
unchanged by the R-T transform.
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In general, the radial traces corresponding to higher velocities encounter the far offset
X-T trace well before the end of the range of X-T travel times, so the high velocity
R-T traces have fewer live samples than their lower velocity counterparts. This
explains the shape of the typical R-T transform, with shorter traces at higher
velocities.

Figure 1 also illustrates the fact that while the R-T transform maps any X-T domain
value to the R-T domain, it does so in a non-uniform fashion; amplitudes at small
offsets and small travel times tend to be over-sampled and those at greater times and
offsets under-sampled, due to the divergence of the radial trace trajectories. For this
reason, we normally specify more traces in the R-T domain than in the original X-T
domain, an attempt to minimize aliasing in the transform and ensure its invertibility.
Referring to figure 1, we can see that the greatest risk of aliasing of the X-T panel by
the R-T trajectories occurs where the R-T trajectories are spread the widest, at the
outer edges of the X-T panel. If we choose a radial trace density great enough that the
R-T trajectories are no more than one sample apart on the outer edges of the X-T
panel, we ensure that every sample in the X-T domain contributes to at least one
sample in the R-T domain. This prevents aliasing of X-T amplitudes in the R-T
domain by the mapping process and enables the full recovery of the X-T panel by the
inverse R-T transform, which can be envisioned as the extraction of amplitudes at
each sample time from the nearest R-T traces along constant-X trajectories in the R-T
domain.

An interesting feature of the R-T transform and its inverse is that one need not
transform the entire X-T panel. The inverse R-T transform can easily fit R-T samples
back into the original X-T panel after some operation in the R-T domain while
leaving the non-transformed X-T data untouched. Furthermore, the formula (3) can be
generalized to allow placement of the radial trace origin at any arbitrary point (x0, t0)
in the X-T plane;

t’ = t – t0; v = (x – x0)/(t – t0). (5)
The utility of this feature will be seen in more detail in the examples shown.

Operations in the R-T domain
We can apply a number of seismic processing algorithms to R-T traces to accomplish
useful objectives, as long as we do nothing that increases inherent aliasing in the R-T
domain (to facilitate inversion back to X-T). As an example, multiple attenuation
(Taner, 1980), (Lamont, et al., 1999) is accomplished by predictive filtering of the
R-T traces, but we need to take care in using any operation that whitens the spectrum
in the R-T domain, since this increases the risk of introducing spatial aliasing back in
the X-T domain. We will not treat deconvolution techniques here, but will focus on
linear event attenuation and enhancement techniques, which generally reduce the
spectral bandwidth rather than increase it.

Two features of the R-T transforms of seismic gathers can be utilized to accomplish
either wavefield separation or linear noise attenuation; the previously described event
stretching, and the discretization of linear events spread across  many traces in an X-T
gather into much smaller sets of R-T traces within the transform.  The latter feature
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means that linear event amplitude can be changed simply by rescaling the R-T traces
containing the event relative to the neighboring R-T traces. Processing algorithms
which can be used in the R-T domain to attenuate or enhance linear events include:

• time or frequency domain low-pass, high-pass, band-pass filtering,

• frequency domain spectral editing (spike clipping, notch filling),

• trace-to-trace amplitude equalization,

• AGC.

Terminology
In what follows, our terminology will be as follows:

• R-T transform means the mapping of seismic amplitudes from the X-T domain to
the radial trace (R-T) domain.

• Inverse R-T transform means the mapping of seismic amplitudes from the radial
trace (R-T) domain to the X-T domain.

• R-T filter means an R-T transform, followed by a time or frequency filter pass
and/or R-T trace amplitude scaling,  followed by an inverse R-T transform.

• R-T fan filter means using an R-T transform and inverse having a wide range of
apparent velocities and an origin in the near vicinity of the seismic source for the
X-T trace panel. The objective is to effectively transform overtly source-
generated events for attenuation or enhancement.

• R-T dip filter means using an R-T transform and inverse having a narrow range of
apparent velocities and an origin distant from the X-T panel.  The motivation here
is to transform parallel dipping  events for effective attenuation or separation.

Fan filtering
To attenuate source-generated linear noise events on source (or receiver) gathers,
which typically cover a range of velocities including the very slow air blast as well as
relatively fast refracted and direct waves, the X-T gather must be examined to
determine the position of the apparent origin of the events (or at least the strongest
ones). From this origin, the apparent velocity limits of a fan covering all the offending
noises can be determined.  In most cases, for source-generated noise, these velocity
limits should include the entire gather, since the direct arrival is linear noise that we
may wish to eliminate. Using the origin and velocity limits determined from the
gather, the X-T traces are transformed to the R-T domain. Linear noise may be
attenuated by low-cut filtering of the R-T traces, using filter parameters comparable
to low-cut parameters that might be used in the corresponding X-T domain. If
particular linear events are especially strong, then following the filtering with trace
equalization or AGC can result in additional attenuation. It should be recognized,
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however, that once relative trace amplitudes are altered  in the R-T domain they
cannot be restored in the X-T domain.

If the linear noise on a gather seems to emanate from more than one origin (surface
wave plus a deep refraction, for example), an R-T fan filter pass can be applied at
each apparent origin.  Repeated R-T filter passes seem to cause little degradation of
the unattenuated modes, except that repeated application of a given filter has the
effect of steepening the roll-off slopes of the effective filter band (the amplitude
spectrum of the filter is multiplied by itself for each additional filter pass). For a high-
pass R-T filter this has little consequence; but for a band-pass R-T filter, the higher
frequencies associated with reflections we desire to preserve may be adversely
affected. Static shifts and other lateral discontinuities in the original X-T panel, such
as geological faults, 60 Hz traces and amplitude-reversed traces, will survive more
than one pass of radial trace filtering without lateral smearing, given appropriate R-T
transform design.

A useful technique for filtering a wide variety of shot records is to apply an ordinary
radial fan filter with origin at or near the shot origin, then to apply a fan filter with
origin located at a ‘virtual source’ point for the ‘back-scattered’ linear noise that often
becomes apparent after the first radial filter pass. Since this noise typically dips
inward towards the zero offset trace, it appears to have an approximate virtual source
at a point below the gather at zero offset. In practice, we accomplish this inverted
radial fan filter application by time-reversing the X-T  traces prior to the R-T filter
pass and time-reversing them again after the pass. The R-T transform origin is then
chosen at some point above the time-reversed gather.

The special case of dispersive linear noises can be effectively addressed in the R-T
domain due to the particular geometry of the R-T transform. If a noise is noticeably
dispersed (different frequency components travelling at different velocities), as with
some examples of ground-roll, or the notoriously powerful ice-wave observed in the
arctic, then individual radial traces will tend to isolate specific frequency components
of the linear noise.  We can then compute the 1-D Fourier transform of each R-T trace
to move to the radial frequency (R-F) domain. In this domain, superimposed upon the
seismic signal spectrum on each R-F trace will be a large amplitude spike at the
frequency of the particular component of the dispersed noise captured by the original
R-T trace. An effective technique for attenuating the noise consists of replacing the
spectral amplitude values in the vicinity of the spike with corresponding values from
the running median of the spectrum (spectral clipping) on each R-F trace. The noise-
free R-T traces can then be recovered from the R-F domain via the inverse 1-D
Fourier transform, and the R-T traces transformed back to X-T via the usual inverse
R-T transform. Being non-linear, this method can attenuate some examples of
dispersed noise more effectively than strictly linear methods. While we don’t
demonstrate this technique here, it has been shown in early radial trace filtering
examples at Shell Canada and will be implemented in a later version of  CREWES
software.

If  a processing objective is to enhance linear events on a panel of seismic traces, this
can be accomplished quite effectively by a low-pass filter in the R-T domain.
Alternatively, linear noise attenuation can be accomplished by subtraction of these
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low-pass R-T filtered data from the original X-T panel. In this case, care must be
taken not to alter the relative amplitudes of the traces in the R-T domain with trace
equalization or AGC. In general, the subtraction method does not seem to be as
effective as the more straightforward low-cut filter in the R-T domain, although it
may work better in cases where the linear noise is badly aliased and thus less
susceptible to low-cut R-T filtering.

Dip filtering
Since we can locate the origin of a radial trace transform at any point within  the 2-D
space containing the panel of traces to be filtered, we can emulate a dip filter by
placing the origin of a narrow fan of radial traces at a great distance from the actual
panel of seismic traces.  Since the range of apparent velocities of the radial traces will
be small (the distance to the ‘virtual origin’ determines the velocity range), we
effectively span the input trace panel with ‘dip trace’ trajectories of  nearly constant
velocity.  In this case, any linear noise aligned with radial traces will have very low
apparent frequencies in the R-T dip domain and can be attenuated with a low-cut
filter. This mode of operation thus emulates one kind of F-K filtering, but like all
radial operations, has the advantage of preserving lateral discontinuities like statics.

Because we often encounter linear noise of relatively constant dip on stacked
sections, the radial dip filter operation is attractive for noise removal in such sections.
Simply by appending some phony source-receiver offset trace headers, sections can
be dip filtered as if they were shot or receiver gathers. Dip filtering is better illustrated
in another chapter of this report (Henley, 1999, 2)

Software
We have developed a set of ProMAX modules to apply R-T domain processing to
seismic trace panels. These include a module to apply both R-T fan filters and dip
filters to a trace panel, a module to perform the R-T transform and its inverse for both
the fan and dip configurations, and a module to perform the forward R-T transform
only, for R-T domain display purposes. The software is described more completely in
another chapter of this report (Henley, 1999, 1).

EXAMPLES

Application to field data: Blackfoot
To illustrate and illuminate the use of R-T domain filtering techniques, we use one of
the 2-D 3-C data sets acquired at the PanCanadian Blackfoot field during the course
of extensive seismic work conducted over several years at that location in order to
help delineate the target channels that comprise the hydrocarbon reservoir (Simin et
al., 1996), (Miller et al., 1995).  We have chosen the records corresponding to the
vertical component of a 2-D 3-C seismic line over the Blackfoot field.  There are 151
stations on the line, spaced 20 metres apart; and all stations were shot for this
experiment, making receiver gathers usable for filtering as well.  Figure 3 shows two
typical shot gathers from this line.  While linear noise is evident on these gathers, the
level is not excessive, and these data can be successfully imaged without an explicit
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noise attenuation procedure. We use these data, therefore, only to demonstrate the
application of the radial trace technique, not to lobby for its preferential use. On these
records we can see two main types of linear noise; direct arrivals and shallow
refractions near the top of the records, and ground-roll and air-blast dominating the
central portion of the records.  The direct arrivals and refractions obscure shallow
reflections at larger offsets while the air-blast and ground roll dominate the deeper
reflections at smaller offsets.  Spatial aliasing is prominent for the air-blast and
ground roll.

The same two records are shown in figure 4 after a single pass of an R-T domain fan
filter with the low-cut at 15 Hz.  In comparison with figure 3, improved amplitude
and lateral continuity for all reflections is evident, particularly those previously
obscured by the shallow refractions. Some apparent “back-scattered” noise inclined
towards the centre of each gather has become more visible as a result of the radial
filter pass.  An additional radial fan filter pass, this time with the traces time reversed
to give the effect of a radial filter positioned at a virtual source below the gather,
results in the panels in figure 5. There is dramatic improvement of reflection
continuity at all levels, and, compared with figure 3, visible static shifts have been
preserved from the original record. This means that the filtered trace gathers can still
be used for residual statics estimation, possibly more successfully than the raw
gathers, due to the reduction of interfering noise.

Low-pass R-T filtered shot gathers appear in figure 6. This is approximately the same
as the noise filtered out by one high-pass R-T fan filter. The result of subtracting this
noise from the original panels is shown in figure 7. The results are evidently not as
good  on this example as those obtained with a straightforward application of a low-
cut filter in the R-T domain (figure 4). Experimentation with filter parameters might
lead to better results in this case.

Figure 8 shows the raw shot gathers in the R-T domain. It can easily be seen that the
direct arrivals and refractions have been rotated to near vertical orientations, such that
their apparent frequency is very low. The ground-roll and air-blast have not
undergone such great changes, but their frequencies have been lowered nevertheless,
increasing their susceptibility to low-cut filtering. Reflections on these records have
been changed little in appearance from those on the X-T gathers of figure 3. The
result of application of a low-cut filter to these R-T traces can be seen in figure 9.
Trace amplitudes have not been re-normalized following the filter application, so that
the figures convey an impression of energy removal from various portions of the R-T
panels.

Noise reduction on shot gathers makes little sense if no improvement is realized on a
stacked section. Therefore, we use CDP stacks to compare shot gathers which have
been R-T filtered with those which have not. For these comparisons, we apply a
simple NMO correction and neglect statics corrections, since statics in the Blackfoot
area are small for compressional waves. As statics derivation can vary significantly
for data traces with different levels and kinds of noise, R-T filtering should improve
statics derivation, however. We are demonstrating here only the explicit improvement
of image due to linear noise reduction techniques.
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As our control image for comparison, figure 10 shows a CDP stack of shot gathers
whose X-T  traces have been low-cut filtered at 15 Hz and NMO corrected.  No initial
muting or statics have been applied.  It can be seen that the 15 Hz low-cut and the
stacking process have removed much of the coherent noise, as anticipated. Figure 11
contains a comparable stack of shot gathers which have received one application of
R-T domain fan filtering, with the same low-cut at 15 Hz. Differences between the
two sections are relatively small, but the shallow portion of the section has been
significantly improved by the R-T domain filter, which has removed the direct arrival,
thus improving the shallow part of the stack. Small improvements can also be seen
near the edges of the section, where the stack fold decreases. In other words, when
noise attenuation due to stacking is less effective, the attenuation due to R-T filtering
is more apparent. We followed the initial R-T fan filter on shot gathers with another
R-T fan filter on inverted shots (for ‘back-scatter’), then applied an R-T fan filter to
receiver gathers. The stack of these data is featured in figure 12. The improvement in
this section is significant compared to the brute section in figure 10. Noise amplitudes
have decreased and event continuity has improved over most of the section, even near
the low-fold edges. Some residual coherent noise is still visible on this section,
however, and we can apply R-T domain dip filters to the section to remove most of
this, as shown in figure 13.  As a final cosmetic step for this comparison, we applied a
mild predictive deconvolution to the stack traces, followed by F-X deconvolution
(figure 14). The brute stack, after application of the same post-stack deconvolution
operations, appears in figure 15. At this point, it becomes evident that the coherent
noise attenuation affected by the R-T filtering has made significant changes in the
appearance of the imaged data. In spite of repeated filter passes, the section in figure
14 shows more apparent recovered signal bandwidth than the brute stack of traces
filtered only once with a 15 Hz low-cut in the X-T domain.

To examine the stack differences in more detail, we compare close-up views of a
small zone centered on one of the target channels in the next few figures. Figure 16
shows this channel zone as it appears on the brute stack section, while the pre- and
post-stack R-T filtered version is displayed in figure 17. The differences are
remarkably small on this portion of the section, where stack-fold is high. However,
when we compare the post-stack deconvolutions of these stacks in figures 18 and 19,
respectively, we see major differences in the appearance of the data. The character of
the channel anomaly is significantly different on the two versions of the stack, and the
differences are probably attributable to the R-T domain coherent noise removal. A
section actually used for interpretation would undergo significantly more
sophisticated processing than either of these examples, however, likely including pre-
stack deconvolution, residual statics, and some type of migration.

Model study
In order to better understand some of the merits of R-T domain filtering with respect
to the more widely used F-K domain filtering, we constructed a synthetic model shot
gather and placed some pseudo-random statics in the trace headers to be applied to
the traces prior to filtering in order to compare lateral smearing for the different
techniques. Smearing by F-K methods is attributable to the spatial convolution of the
truncated X-T impulse response of the F-K domain filter with the traces of an input
X-T panel. Smearing by R-T methods is attributable to two effects: convolution of the
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filter impulse response, similar to the X-T application of F-K filters, and the intrinsic
X-direction interpolation used by the R-T transform and its inverse to move from the
X-T to the R-T domain and vice versa. In the R-T transform, we always choose finite
velocities for the radial traces, so the filter impulse response in the X-T domain,
which extends only along R-T trace trajectories, will never have a component
explicitly aligned with the X-direction and will never intrinsically smear horizontally.
The X-direction interpolation method in the transform, however, can lead to
significant lateral smearing if not carefully chosen. We test here a simple
interpolation method that minimizes this smearing.

The synthetic shot gather created for the test (figure 20) contains five reflection-like
events with hyperbolic moveout and two linear events, one fast and unaliased, the
other slower and close to the spatial alias threshold.  Event amplitudes are such that
the two linear events are stronger than the underlying reflections, as is typical for real
shot gathers. When doing visual comparisons on these synthetic data, we identify the
signal/noise ratio approximately with the ratio of the peak amplitude of the desired
event to the peak amplitude of the undesired one. Figure 21 shows the synthetic
gather after application of a typical R-T domain fan filter. The fast linear event has
been almost totally removed, while the slower event has been significantly attenuated,
but survives due partly to the fact that the first R-T filter origin does not coincide with
the event origin.  We apply a second R-T filter at this event origin, the result of which
is shown in figure 22. The slow linear event has been much reduced in amplitude, but
some energy at spatially aliased frequencies remains. We next examine the result of
applying an F-K velocity filter in the reject mode (cut events with velocity lower than
that of reflections) to the synthetic model (figure 23). The traces on the gather have
not been re-normalized after filtering. The low velocity linear event has been
relatively well attenuated, but the high velocity event still retains much of its energy.
The result of applying an F-K velocity filter  in the boost mode (boost events having
higher velocity than noise) to the synthetic shot gather appears in figure 24. Again,
traces have not been re-normalized after filter application. In this case, the low
velocity linear event has been almost totally removed, and the high velocity one
significantly attenuated.

We examine these results in more detail in figure 25, which shows a close-up of the
portion of the synthetic gather where the slow linear event crosses the reflection
events. The same close-up after one pass of the R-T fan filter, and two R-T filter
passes (the second at the slow event origin) are shown in figures 26 and 27,
respectively.  Figures 28 and 29 are the results of the F-K velocity reject and velocity
boost filter passes.  From these results, it appears that the F-K boost filter is the most
effective for attenuating the slow linear event, while the R-T fan filter is the most
effective against the fast linear event, and the two-pass R-T combination is the most
effective overall. Little attempt was made in this study to design the best coherent
noise filter either in the R-T domain or in the F-K domain; this study is meant only as
a quick illustration of some of the differences in the two techniques. We chose to test
the velocity wedge F-K filters because of the similarity of some of their key design
parameters to those in R-T filters, specifically velocity limits.

We next explore the effect of applying each of the filters described above to data
having uncorrected statics, since prior to filtering, we are often unable to reliably
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derive and remove statics on very noisy shot gathers. Figure 30 shows the synthetic
shot gather with pseudo-random statics applied to the traces. The statics affect the
linear events as well as the reflections and will degrade filter performance by mis-
aligning the noise events. The synthetic shot with statics after one pass of R-T fan
filtering is shown next in figure 31. As anticipated, filter performance has been
compromised somewhat, particularly on the fast linear event, but the static shifts on
the trace events remain apparently unaffected by the filter process. The result for two
R-T  fan filter passes in figure 32 shows that the second R-T pass has further reduced
linear event amplitude while affecting statics very little, except for the appearance of
some small side-lobes on the reflection events due to filter response tails from the
R-T domain. These are visible only on synthetics with widely spaced events separated
by explicitly zeroed dead zones. Figure 33 is the result of applying the F-K velocity
reject filter to the synthetic with statics. We note somewhat less effective filtering
than in the no-statics case in figure 23, but we see that the original statics have been
well-preserved, with almost no side-lobes. Figure 34 demonstrates the comparable
result for the F-K velocity boost filter. Once again, we see some decrease in filter
effectiveness, though the low velocity linear event is still strongly attenuated. This
filter, however, destroys virtually all statics information; we see the classical
smearing effect often attributed to F-K filters.

To see more detail, we look once again at close-ups of the above records. Figure 35 is
the same close-up view as figure 25, but with the trace header statics applied. The
close-up appears again in figure 36 after one R-T fan filter pass, while figure 37
demonstrates the effects of two R-T filter passes. While filter response tails have
created some side-lobe energy in the dead zones of the synthetic gather, the reflection
events remain quite clear and easily correlated, with no apparent affect on their static
shifts. The close-up after F-K velocity reject filtering is shown in figure 38. The static
shifts are preserved in this case, as well, but reflection amplitudes show variations
that could degrade the performance of an automatic correlation algorithm. In figure
39, we confirm that F-K velocity boost filtering, while effectively removing the low
velocity linear event, also destroys all statics information.

In figure 40, we show a close-up of a different part of the synthetic gather, at larger
offsets than the previous close-up. In this portion of the synthetic, radial traces in the
R-T transform span the gather at smaller angles to the horizontal, and might therefore
be expected to have more of a lateral smearing effect on statics. Indeed, in figure 41
where one pass of R-T fan filtering has been applied, we can find several examples
where reflection amplitude and/or character have apparently suffered from the radial
filter application, typically where the local slope of a trace-to-trace static shift is the
same as the slope of the radial trace in the R-T transform. This alignment leads to
smearing of the event along the radial trace direction by the filter response function.
Fortuitously, however, this alignment of local static shift slope with radial trace slope
can occur only once per trace for a given static shift; so that if one event on an X-T
trace is affected, the other events will be less so, and the static is consistently
correlatable on the other events on the trace. Figure 42 illustrates the effect of
applying two passes of R-T fan filtering to the gather. The preservation of statics by
the velocity reject mode of F-K filtering is well-illustrated in figure 43, and their total
smearing by the velocity boost F-K filter is shown in figure 44.
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What this limited study has shown is that R-T domain filtering can be very effective
while still preserving lateral trace-to-trace variations such as statics. More effective
filtering of low velocity linear events can be done in the F-K boost mode, but only
with accompanying smear of lateral details. These can be preserved using the F-K
reject mode, but noise attenuation is not as effective then.

DISCUSSION

Results
We have demonstrated a new technique for wavefield separation and coherent noise
attenuation based on the radial trace transform. Further, we have shown that it can be
effective in attenuating noise while preserving lateral detail in panels of traces to
which it is applied.  Because it is a simple mapping, the radial trace transform is easy
to compute and invertible, if precautions are taken to avoid aliasing. Transform
design parameters are easily related intuitively to coherent events on panels of
seismic traces; and in some filter applications, it can be more effective than the more
traditional F-K transform. Unlike F-K filters, R-T domain filters can be applied
repeatedly, so that several passes can be applied to a single gather or panel, each pass
directed at a particular type or mode of coherent noise (Henley, 1999, cas1). Also
unlike F-K filtering, R-T domain operations do not require that the original data panel
be uniformly gridded in either X or T, since any point in the R-T domain can be
appropriately determined by interpolation from existing points in the X-T domain.
Also, the entire X-T domain does not need to be mapped into the R-T domain. Any
subset can be completely transformed from the X-T plane to the R-T domain and
back. The latter two properties of the R-T transform  can provide a real advantage
over an integral transform like the F-K for some applications.

Situations where R-T domain filtering should be considered as an alternative to F-K
filtering are as follows:

• source or receiver gathers with very strong coherent noise emanating from one or
more apparent source points on or near the gather, where an imagined overlay of
radial trace trajectories on the gather would show considerable alignment between
radial traces and coherent noise wavefronts.

• source or receiver gathers with strong first arrival noise masking shallow
reflections at larger offsets.

• source or receiver gathers with irregular distributions of source-receiver offsets

• gathers with linear noise demonstrating large dispersion (ground-roll, ice-wave)

• lines with low stack-fold and high levels of coherent noise

• stacked sections exhibiting residual dipping coherent noise from incomplete pre-
stack filtering (R-T dip filter)
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• gathers with such low signal/noise ratios that reflections are badly obscured, on
which it is not possible to find and remove statics prior to coherent noise removal

• gathers on which reflections and coherent noise have the same dip, but different
origins

Extensions and further development
To this point, we have discussed only one broad application for the radial trace
transform, that comprised of wavefield separation and coherent noise attenuation.
Only the simplest form of the transform has been presented for this application.
There are many interesting modifications that can be made to the basic transform that
can materially expand its usefulness for geophysical applications. One of the simplest
is the incorporation of a means for curving the radial trace trajectories of the
transform. This allows the radial traces to better fit some types of coherent events and
thus to affect a better separation of these events in the R-T domain. A variation of this
idea would allow radial traces to follow the trajectories of raypaths projected into the
subsurface through a velocity model (Ottolini, 1988). Transforming gathers using
such a raytracing scheme and sorting the resulting R-T traces into common-apparent-
velocity panels would yield panels on which Amplitude-vs-Angle (AVA) effects
should be apparent (Claerbout, 1983), which may be useful for analysis of angle-
dependent phenomena. We intend to pursue this potential application.

Because of the irregularity of offset distributions in 3-D shot gathers, rejecting
coherent noise is difficult using F-K techniques. The R-T filter technique can be
applied without modification, by treating each receiver-line spread like a 2-D shot
gather and using the source-receiver offsets from the trace headers. Because source-
generated noise is most coherent and least aliased in the receiver line gathers, these
are the appropriate gathers to which to apply the filter.

Since the R-T transform is an interpolating transform, it can be used to regularize
input trace gathers by replacing the source-receiver offsets of the original X-T traces
input to the forward transform with a new set of offsets in the inverse transform.
Likewise, the trace amplitudes can be re-gridded to a new set of travel times in the
inverse R-T transform. We have made provision in the current software for re-
gridding an input gather to the X-T, the X**2-T, or the X**2-T**2 domains. The
latter is particularly useful, since all hyperbolic events map to straight lines. In this
domain, not only do hyperbolic events become linear, but reflections have nearly the
same linear moveout while multiples or other wave modes like shear waves have a
different linear moveout at the same travel times. This may afford an opportunity for
effective wavefield separation for P and converted modes recorded on the same shot
panels. Likely, both the R-T and τ-p domains would prove useful in this context. We
intend to investigate the X**2-T**2 domain further for other potential applications.

Multiple attenuation in the R-T domain has been demonstrated by others, but we hope
to investigate this application area as well.
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FIGURES

Mapping the X-T domain to the R-T domain

Radial trace
trajectories

Figure 1 -- Schematic showing the mapping of seismic traces from the X-T domain to the
radial trace (R-T) domain. The numbers label representative radial traces to be shown in
figure 2. The mapping for a given radial trace proceeds by following a dipping trajectory from
its origin to the edge of the X-T panel, selecting an amplitude value from the X-T panel at
every sample time, interpolating from the two nearest X-T traces where necessary.
Alternatively, the mapping can be done by interpolating the trace amplitudes along lines of
constant sample interval (time slices) from the X values of the X-T panel (source-receiver
offsets) to the X values computed for the suite of radial traces at the same time sample. The
latter proves to more computationally efficient in actual practice.
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Selected radial traces from R-T domain

Frequencies much lower
for radial trace nearly
parallel to linear event

Frequencies unaffected
for radial trace nearly
perpendicular to events

No live data samples in 
this zone from original
shot gather

Figure 2 – Schematic showing selected radial traces from the X-T panel in figure 1. Trace
numbers correspond to like-numbered trajectories in figure 1. For a high velocity trajectory
like no 1, the corresponding radial trace is shorter because the trajectory encounters fewer
live samples on the X-T panel before going off the edge of the live data. Low velocity
trajectories like no 5, however, span the entire record time of the X-T panel. Because the
high velocity trajectories encounter the linear events on the X-T panel very nearly parallel to
wavefronts, these linear events are represented on the corresponding radial traces as very
low-frequency events—a radial trace perfectly aligned with a linear event would record only a
DC level. This shift of apparent frequency in the radial trace domain is what enables
coherent noise attenuation and wavefield separation.
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Figure 3 – Typical raw shots from the Blackfoot 20m vertical component data set. Linear
noise is prominent over much of these records.

Figure 4 – Shot gathers from figure 3 after one pass R-T domain filtering with a low-cut of 15
Hz. Reflections show more continuity, and “back-scatter” noise can now be seen.
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Figure 5 – Blackfoot shots after second pass of R-T filter, this one time-reversed. Much of
the back-scatter has been removed, the reflections are more continuous.
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Figure 6 – Blackfoot shots low-pass filtered in the R-T domain. This is essentially the
coherent noise filtered out by one low-cut R-T fan filter pass.
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Figure 7 – Result of subtracting the noise estimated in figure 6 from the raw shots in figure 3.
The results are not as good as a straightforward low-cut R-T fan filter pass.
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Figure 8 – The raw shots of figure 1 in the R-T domain. Near-vertical bands of energy
correspond to linear noises mapped into the R-T domain.
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Figure 9 – R-T domain traces after application of low-cut filter. Traces were not re-
normalized, so that comparison to figure 8 will show the energy removed by the filter.
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Figure 10 – Brute CDP stack of shot gathers low-cut filtered at 15 Hz. in the X-T domain.
This is the baseline standard for judging the effectiveness of R-T domain filtering.
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Figure 11 – Stack of shot gathers which have been low-cut filtered in the R-T domain at 15
Hz. The most improvement with respect to figure 10 is in the shallow portion of the section.
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Figure 12 – Blackfoot CDP stack in which the shot gathers have been filtered twice in the R-T
domain (one pass inverted) and the receiver gathers once. The section is significantly
improved, but residual dipping noise can be seen upon close inspection.
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Figure 13 – Stack of figure 12 after the application of post-stack R-T domain dip filters.
Dipping noise is further attenuated.
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Figure 14 – Section of figure 13 after application of mild predictive deconvolution and F-X
deconvolution. These steps restore higher frequencies to the section.
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Figure 15 – Blackfoot brute stack from figure 10 after application of post-stack predictive
deconvolution and F-X deconvolution to restore higher frequencies. Differences between this
section and that in figure 14 are now quite evident.
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Figure 16 – A channel feature as it appears on the brute stack section.
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Figure 17 – Channel feature as it appears on the section whose shots have been R-T filtered
twice, receiver gathers once; and which has been post-stack R-T dip filtered. Differences
between this figure and the previous one are relatively minor.
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Figure 18 – Channel feature after pre- and post-stack R-T filtering, post-stack deconvolution.
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Figure 19 – Channel feature as seen on the post-stack deconvolved brute stack. The
appearance is quite different from figure 18, which could influence interpretation.
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Figure 20 – Synthetic shot gather created to test R-T domain and F-K domain filters. Linear
“noise” events are significantly stronger than the hyperbolic “reflections”.
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Figure 21 – Synthetic shot gather after application of typical R-T fan filter. Fast linear event is
nearly gone, while slow event is significantly attenuated.
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Figure 22 – Synthetic shot gather after application of a second R-T fan filter with origin
chosen to coincide with that of slow linear event, which is additionally attenuated.
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Figure 23 – Synthetic shot gather after application of F-K velocity reject filter. Gather traces
have not been re-normalized after filter application. Both linear events attenuated somewhat.
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Figure 24 – Synthetic shot gather after application of F-K velocity boost filter. Gather traces
have not been re-normalized after the filter. Low velocity event has been nearly totally
removed. High velocity event attenuated.
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Figure 25 – Detail of the synthetic gather in figure 20. Note strength and apparent frequency
of low velocity linear event with respect to “reflections”. This detail in the “low velocity” portion
of R-T domain.
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Figure 26 – Detail of the synthetic gather after one pass of R-T domain fan filter.
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Figure 27 – Detail of synthetic shot gather after two R-T filter passes.
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Figure 28 – Detail of synthetic gather after application of F-K velocity reject filter.
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Figure 29 – Detail of synthetic gather after application of F-K velocity boost filter.
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Figure 30 – Synthetic gather of figure 20 after the application of pseudo-random static shifts
to the traces. Shifts affect the linear events as well as the reflections.
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Figure 31 – Synthetic gather with statics after application of one pass of R-T fan filter. Noise
attenuation somewhat diminished, but static shifts survive.
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Figure 32 – Synthetic gather with statics after application of two passes R-T fan filter.
Attenuation improved, static shifts still survive.
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Filter 33 – Synthetic gather with statics after application of F-K velocity reject filter. Static
shifts are very well preserved, noise attenuation is moderate.
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Figure 34 – Synthetic gather with statics after application of F-K velocity boost filter. Static
shifts are completely smeared, and the low velocity linear event is less effectively attenuated.
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Figure 35 – Detail of synthetic gather with pseudo-random statics applied.
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Figure 36 – Detail of synthetic gather with statics after one pass of R-T fan filter.
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Figure 37 – Detail of synthetic gather with statics after two passes of R-T fan filter. Static
shifts are preserved, but filter tails are beginning to fill blank zones.
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Figure 38 – Detail of synthetic gather with statics after F-K velocity reject filter. Static shifts
are preserved, but event amplitudes are disturbed.
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Figure 39 – Detail of synthetic gather with statics after application of F-K velocity boost filter.
Static shifts are totally smeared, amplitudes disturbed.
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Figure 40 – Detail of synthetic gather with statics at longer offsets, shorter times than
previous detail area. This detail is from the “high velocity” zone of the R-T domain.
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Figure 41 – Detail of synthetic gather with statics from the high velocity portion of the R-T
domain after one pass of R-T fan filter. Static shifts mostly well-preserved.
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Figure 42 – Detail of synthetic gather with statics from the high velocity region of the R-T
domain after two passes of R-T fan filter. Static shifts mostly preserved; filter tails filling blank
zones.
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Figure 43 – Detail of synthetic gather with statics after application of F-K velocity reject filter.
Statics and event amplitudes well preserved in this high velocity zone.
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Figure 44 – Detail of synthetic gather with statics after application of F-K velocity boost filter.
Static shifts totally smeared, and event amplitudes distorted.


