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ABSTRACT 
This paper presents an exact method for inversion of VSP data for anisotropic 

parameters that uses traveltimes directly, rather than phase slownesses computed 
from traveltime differences. There is a tradeoff in the present traveltime-based 
method compared with the slowness-based method. In our method we have to assume 
some function representing the vertical velocity variation, something that is not 
necessary in the phase-slowness method. There is, however, a higher numerical 
accuracy in the direct traveltime method. This is due partly to our using observed 
traveltimes directly in the computations rather than taking differences between values 
of comparable size, which greatly magnifies the relative errors. Error analysis shows 
that there also are other intrinsic reasons why our technique has less error. A 
numerical example representing a typical VSP yielded errors from the phase-slowness 
method (requiring two sources and two receivers) that were about 18 times larger 
than for a single determination by the direct traveltime method. Furthermore, in cases 
where the VSP has been acquired with a single source offset, e.g., for some offshore 
wells, the traveltime method will yield results, whereas the slowness method will not. 

INTRODUCTION 
In the last decade or two there has been a greatly increased recognition that 

significant seismic anisotropy is rather common in sedimentary rocks. It has also been 
shown that neglecting even a seemingly modest degree of anisotropy can lead to 
significant degradation in processed seismic images (e.g., Winterstein, 1986; Wright, 
1987; Larner, 1993; Tsvankin, 1996; Chen and Castagna, 2000) or to significant 
errors in vertical or lateral positioning of subsurface features (e.g. Banik, 1984, 1987; 
Isaac and Lawton, 1999; Vestrum et al., 1999). 

Gaiser (1990) determined how to estimate the anisotropic parameters of a 
transversely isotropic medium from VSP data using vertical and horizontal phase-
slowness measurements. Miller and Spencer (1994) and Miller et al. (1994) presented 
methods for inverting phase slowness estimates from walkaway VSPs for anisotropy 
parameters. Using a similar method, Leaney et al. (1999) have inverted 
multiazimuthal multioffset VSP P-wave data over a marine carbonate reservoir to 
determine azimuthal anisotropy in the carbonate and transverse isotropy in the 
overlying shale. Leslie and Lawton (1999) present a method for inverting refraction 
seismic data for the anisotropic parameters of steeply dipping strata. Tsvankin and 
Thomsen (1994) and Alkhalifah and Tsvankin (1995) deal with the problem of 
inverting for longer spreads, beyond the near-vertical elliptic-anisotropic 
approximation, in order to recover velocity fields for processing.  

                                                 
* Authors listed in alphabetical order. 
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This paper investigates the problem of determining the degree of anisotropy in a 
buried layer under certain assumptions. Principally, we assume some knowledge of 
the section above the anisotropic layer of interest, i.e., its velocity as a function of 
depth and its anisotropic properties. Further we assume the target medium to be 
transversely isotropic with a vertical symmetry axis (TIV) and we consider the case 
of elliptical anisotropy, which is valid for SH-wave propagation at all angles of 
incidence and for P-wave propagation in the short-spread approximation. This 
method will use traveltimes directly, rather than phase slownesses, thereby avoiding 
the loss in numerical accuracy associated with taking differences between values of 
comparable size, and allowing recovery of at least some results when a VSP has been 
acquired at only a single source offset. 

MATHEMATICAL BACKGROUND 

Group and phase velocities 
In a medium composed of n horizontal layers, the traveltime, t, between a point 

source and a point receiver can be written as the sum of traveltimes in all layers, 
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where li is the distance traveled in the ith layer and Vii is the corresponding group 
velocity. If the medium is anisotropic, the magnitude of the group velocity depends 
on the direction of propagation. 

In a plane of symmetry, group velocity, V, can be expressed in terms of phase 
velocity, v, as  
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where φ and θ are group and phase angles, respectively. The relation connecting 
group and phase angles is given by the equation for the slope of the normal to the 
phase-slowness curve, 1/v versus θ, expressed in polar coordinates, as 
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 (e.g., Berryman, 1979; Brown et al., 1991). 

Elliptical anisotropy 
The expression for phase velocity of an SH wave in a transversely isotropic 

medium (and following his notation) is given by Thomsen (1986) as: 
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and β0 ≡ vSH (0) is the SH-wave speed along the symmetry axis, which we take to be 
the vertical direction. The elastic stiffnesses, Cij, are as defined by Thomsen (1986). 

Substituting equation (4) into equation (2) gives an equation for the magnitude of 
the group velocity as a function of the phase angle and Thomsen parameter, namely, 
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Similarly, inserting equation (4) into equation (3) gives an expression for the group 
angle as a function of the phase angle: 

 ( )[ ] ( ) θγθφ tan21tan += . (7) 

Solving equation (7) explicitly for θ and substituting into equation (6) yields an 
expression for group velocity as a function of group angle (Aggarwala et al., 1997), 
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which may be written as: 
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showing clearly the elliptical nature of the group-velocity or wavefront surface. This 
is what is meant by the term elliptical anisotropy (e.g. Daley and Hron, 1979). 

The short-spread approximation, i.e., at near-vertical incidence, for phase velocity 
of a P wave in a transversely isotropic medium, which can be derived from equations 
(10a), (10d) and (17) of Thomsen (1986) by neglecting terms in sin4θ and higher, is: 

 ( ) θδαθ 2
0P sin21+=v , (10) 

which is wholly analogous to equation (4), the phase-velocity expression for vSH. In 
equation (10): 
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and α0 ≡ vP(0) is the P-wave speed along the vertical axis (Thomsen, 1986). 

Since equations (4) and (10) are of identical form, representing elliptical 
anisotropy, the ensuing discussion could equally well apply to P waves, in the near-
vertical approximation, or to SH waves exactly; and P-wave equations exist that are 
analogous to equations (6) to (9) for SH. In the rest of this paper we shall generally 
drop the subscripts SH and P, though we shall continue using γ and α0 (since the 
equations are exact for the SH case), realizing that the discussion also applies to the 
near-vertical P case, with γ ⇒ δ and β0 ⇒ α0. 

TRAVELTIME INVERSION 

Isotropic homogeneous upper layer 
Consider transmission through a two-layer medium as illustrated in Figure 1. It is 

assumed that the media belong to the symmetry class of transverse isotropy with a 
vertical symmetry axis (TIV). Assume further that the anisotropic parameter in the 
upper (surface) layer is known and denoted by γ1, and that the linear-vertical-
inhomogeneity parameters, a and b in the group-velocity expression V(z) = a + bz 
also are known. For clarity of presentation, the upper layer is assumed to be isotropic 
and homogeneous, i.e., γ1 = 0, and b = 0, respectively. However, upon minor 
modifications, the method is applicable in the anisotropic or the inhomogeneous 
cases, γ1 0≠  or b 0≠ , provided γ1 and b are known. 

We wish, based on traveltime measurements, to determine the anisotropic 
parameter, γ, in the lower (buried) layer. Using the symbols shown in Figure 1, one 
can rewrite equation (1), as: 
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Since this is a problem with two unknowns, γ and r, we need a second equation for 
its solution. The second equation comes from the calculus of variations, or Fermat�s 
principle of stationary time, namely, 

 ( ) 0=
dr

rdt . (13) 

As it stands, equation (13) is difficult to use in traveltime inversion: inverting for γ 
requires extremizing ( )rt  subject to the constraint of the measured traveltime, t = t0. 

The key to a practical inversion scheme is the condition: 
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which follows from equation (13) as shown in the following lemma. 

Lemma: With the traveltime, t, being a function of the refraction point, r, and 
anisotropic parameter, γ : 

 ),( γrft = , (15) 

Fermat�s principle of stationary time [equation (13)] implies 0=
∂
∂

r
γ  [equation (14)]. 

For t a minimum, the critical point of ( )rγ  is also a minimum. 

Proof: Note that γ, although unknown, is constant, i.e., γ = γ0. Thus the total 
derivative with respect to r in equation (13) is equivalent to a partial derivative, 
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Figure.1. The two-layer model. Top layer thickness is denoted by H. The depth of the receiver 
in the buried layer is given by Z. The horizontal source-receiver offset is denoted as X. The 
symbol r corresponds to the lateral distance between the receiver and the refraction point. 
For simplicity, in this illustration the upper layer is homogeneous. The exact expressions 
derived in this paper, however, accommodate media exhibiting linear velocity function 
yielding circular-arc raypaths. 



Brown et al. 

 CREWES Research Report � Volume 12 (2000)  

Fixing the measured traveltime, t = t0, equation (15) may be solved for γ. 
Substituting back into equation (15) evaluated at t = t0 yields an implicit equation for 
r, 

 ( )[ ] 00,, ttrrf =γ . (17) 

Differentiating equation (17) with respect to r, since t0 is a constant, it follows that 
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By Fermat�s principle, as stated in equation (16), the first term vanishes; while by 

physical reasoning, ∂f/∂γ  is never zero [see equation (12)]. Therefore, 0=
∂
∂

r
γ  

[equation (14)] showing that the physical value of γ = γ0 is a critical point. 

Differentiating equation (17) again, one can show that if t0 is a minimum at r0, then 
the critical point of ( )0, trγ  is also a minimum. Thus, 
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The first term is positive since it is the second derivative of the traveltime function 
evaluated at a minimum; the second term vanishes because ∂γ/∂r = 0; while in the 
third term, ∂f/∂γ is negative since the traveltime decreases with increasing γ [see 
equation (12)]. Therefore, 

 02

2

>
∂
∂

r
γ , (20) 

indicating a minimum of γ ; Q.E.D. 

Having measured the traveltime t(r, γ) = t0, we can uniquely determine the actual 
value of the anisotropic parameter, γ, by first solving equation (14) for r. Specifically, 
in the present case we may invert equation (12) to obtain an explicit formula for γ, 
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The derivative is then: 
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If the phase-slowness surface has no concavities (Helbig, 1994), the appropriate 
real value of r must lie between 0 and X (Figure 1) and correspond to a minimum of 
γ. This follows from the fact that (with the exception of the singular point at x = �0.5) 
the factor 1/(1+2γ) in the traveltime equation (12) decreases monotonically with 
increasing γ. That is, 

 0
21
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γ+γ

Zr
d
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for physically meaningful values of r and Z. 

Once the value of r is found from equations (14) and (22), it is inserted into 
equation (21) and the corresponding value of γ calculated. Note that, rather than 
numerically solving equation (15) for dγ/dr = 0, it is preferable to minimize the 
function γ(r) directly, as we do numerically using a Newton-Raphson algorithm. This 
preference is suggested by a number of standard results in numerical analysis, which 
indicate direct minimization techniques are typically more robust than root-finding 
applied to a derivative. (Press et al., 1992, pp. 382-395). 

Ansotropic or inhomogeneous upper layer 
If the medium above the layer in question is assumed to be homogeneous and 

anisotropic, the first term on the right-hand side of equation (12), i.e., the traveltime 
in the upper medium, becomes, 
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where the speed, V, along the vertical axis, and the anisotropic parameter, γ1, are 
known.  

If the medium above the layer in question is assumed to be isotropic and linearly 
inhomogeneous, i.e., v(z) = a + bz, the first term on the right-hand side of equation 
(12), i.e., the traveltime in the upper medium, becomes, 
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where, 
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(Slawinski and Slawinski, 1998). 

NUMERICAL EXAMPLE 

Our direct traveltime method 

Subsurface model 
Consider the following scenario. An isotropic, vertically inhomogeneous medium 

overlies an anisotropic, homogeneous medium. The interface between the two media 
is horizontal. The upper layer is 1000 m thick and has a linearly increasing velocity 
given by: 

 ( ) z.zV 802000 +=   (SI units). (27) 

The lower medium exhibits elliptical anisotropy with a vertical symmetry axis 
described by the parameter γ = 0.25. The speed along the vertical symmetry axis is β0 
= 2500 m/s. 

Such a scenario can be viewed as a good model for basins where, for instance, an 
anisotropic shale is situated below a thick clastic sequence. Slotnick (1959), for 
example, stated that in his experience, P-wave velocity in many basins is closely 
approximated by a linear function of depth down to about 6000 m. Acheson (1981) 
found a power-law relationship to represent P-wave velocity-depth variation most 
precisely, but that the power law approached a linear variation as his parameter, n, 
approached unity. He found n to lie between 0.83 and 1.0 at virtually all wells studied 
in western and northern Canada. Finally, Jain (1987) stated that most logs in the 
western Canadian basin justify a linear increase in velocity with depth down to the 
Paleozoic unconformity. 

Recording geometry 
To illustrate our method based on the type of data which one could obtain by a 

standard field acquisition method, let the VSP geometry be represented by a source S1 
located at a horizontal distance of 800 m from the receiver and a receiver, R1, located 
at 100 m below the interface separating the isotropic and anisotropic media. 



VSP traveltime inversion for elliptical anisotropy 

 CREWES Research Report � Volume 12 (2000)  

Forward traveltime 
Following the forward model based on the exact traveltime expressions for linear-

velocity media (e.g., Slawinski and Slawinski, 1998), and using our Mathematica 
code (available from the authors), the exact traveltime is t = 0.5635204778989572 s. 

Inversion using direct traveltimes 

Following the inverse method presented herein and using our Mathematica code 
(available from the authors), the result is γ  = 0.25, as expected. 

Traveltime-error sensitivity 

For the sensitivity analysis consider the range of values t ± 0.001 s, namely, tmin = 
0.5625204779 s and tmax = 0.5645204779 s. This range of traveltime errors results in 
the anisotropy parameters given by γmin = 0.302223 and γmax = 0.197557, respectively. 

The phase-slowness method 
The phase-slowness method (e.g. Gaiser, 1990; Miller and Spencer, 1994) is based 

on estimates of the horizontal slowness, p, and the vertical slowness, q, wherein for 
the TIV case, one can use the equation: 

 ( ) 2
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22 121
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γ =++ pq , (28) 

to solve for the anisotropy parameter, namely, 
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Considering two sources and two receivers, one can write 
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where ijt  is the traveltime between the ith source and jth receiver. Hence, taking the 
average, namely 
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one obtains the values to be used in equation (29). 

Recording geometry 
Due to distance increments, as shown in expressions (30) and (31), the slowness 

method requires traveltime measurements at two surface locations and two depth 
locations. To provide additional insight to the application of this approach, let the 
VSP acquisition geometry be represented by three sources, S1, S2, and S3, located at 
750 m, 800 m and 1250 m from the vertical wellbore, respectively, and by two 
receivers, R1 and R2, located at 85 m and 100 m, respectively, below the interface 
separating the isotropic and anisotropic media. 

Inversion using horizontal and vertical slowness 
Considering S1 and S2, and using the exact traveltimes, the anisotropy-parameter 

value, resulting from the slowness method, is γ = 0.2502393252714912. 

Distance-increment sensitivity 
The slowness method is derived based on the concept of local slowness. 

Consequently, the change of distance increments used in expressions (30) and (31) 
affects the results. Considering the exact traveltimes from the sources S1 and S3, the 
value resulting from the slowness method is γ = 0.2601712990007443. 

Traveltime-error sensitivity 
In view of equations (30) to (33), the systematic error does not affect the slowness 

method. As an alternative, rounding off to the three decimal points was used to give 
an indication of the sensitivity of this method to the traveltime errors. This yields γ = 
0.162. 

Discussion of numerical results 

The direct traveltime method: 

• requires single source and single receiver; 
• assumes linear vertical velocity function in the medium overlying the anisotropic 

medium; 
• assumes no lateral velocity variation. 
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The slowness method: 

• requires two sources and two receivers to yield a single result; 
• assumes no lateral velocity variation. 

Comparison of the two methods 

Velocity-model considerations 
In principle, the slowness method is more general than the traveltime method since 

it does not require any knowledge of the vertical-velocity function. On the other hand, 
the direct traveltime method is based on the assumption of the linear vertical-velocity 
function. 

Acquisition considerations 
The direct traveltime method requires a single source and a single receiver while 

the slowness method requires a couple of sources and a couple of receivers. The 
direct traveltime method uses the source and receiver locations as two points, while 
the slowness method uses horizontal and vertical increments and, hence, requires the 
same elevation of sources and the same horizontal location of receivers. In other 
words, unlike for the direct traveltime method, the application of the slowness method 
depends on surface topography and on the shape of the wellbore. 

Sensitivity 
Offset increments 

The slowness method depends on distance increments, namely ∆x and ∆z − a 
nonexistent consideration for the direct traveltime method. As the distance increments 
grow, the error increases. On the other hand, the independence of each source-
receiver couple, in the direct traveltime method, gives certain statistical indication of 
results. 

Traveltime 
Using exact data, both the traveltime and the slowness methods give good results. 

Slowness method would also yield an exact value − as exhibited by the traveltime 
method − if ∆x → 0 and ∆z → 0, in expressions (30) and (31). The direct traveltime 
method appears to be significantly less sensitive to the traveltime errors than the 
slowness method. 

ANALYTIC ERROR ANALYSIS 
One valuable feature of the above inversion technique is that it has fairly good 

performance in the presence of measurement error. In particular, errors in measured 
traveltime results in an (absolute) error in γ which is roughly an order of magnitude 
larger. This compares very favourably with other techniques, such as the slowness 
method, where the resulting error in γ can be two orders of magnitude larger. One 
reason for this good performance is the fact our technique is derived from exact 
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equations. Another reason, intuitively, is that the value of γ is computed at a local 
minimum, and hence changes very slowly near this minimum. 

More precisely, suppose 0tt =  is the exact traveltime, 0rr =  is the exact 

minimizer to the function ( )0, trγγ =  (thus an exact root to ( ) 0, 0 =
∂
∂ tr

r
γ ), and 

( )000 , trγγ =  is the exact value for the Thomsen parameter. If there is an error of t∆  
in the measured traveltime, the inversion method begins with the exact time 0t  
replaced by tt ∆0 + . Minimizing the function ( ) ( )ttrr ∆, 0 += γγ  yields a new root to 
the perturbed equation: 
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and thus solving for r∆  in terms of t∆ , we find 
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Now, the error in γ computed to first order, is given by: 
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but of course the middle term is zero, since ( ) 0, 00 =
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γ . Thus the error in γ is 

proportional to the partial derivative ( )00 , tr
t∂

∂γ . 

With ( )tr,γ  given by equation (21) we easily compute: 
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For a numerical example with homogeneous upper layer and values: 

 2000=V  m/s 

 25000 =β  m/s 

 800=X  m 

 1000=H  m 

 100=Z  m (39) 

 25.00 =γ  

 65938.00 =t  s 

 84.1710 =r  m 

one finds  

 8.32−=
∂
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t
γ  s�1. 

In particular, an error in measured t of one millisecond ( 001.0δ =t  s) leads to an error 
in γ of about 0.033 (∆γ = �0.033). These derivative results are consistent with the 
results found numerically in this paper. 

By comparison, in the slowness method, we have 
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where for horizontal and vertical slownesses, p and q, one uses average measures of 
the inverse velocities ∆t/∆x and ∆t/∆z, respectively. An error of ε in the ∆t values 
leads to errors in p and q of ε/∆x and of ε/∆x, respectively. To first order, the error in 
γ is found by: 
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where we have written ± since the time measurement errors in p and q may be in 
different directions. In fact, for the uncertainty in γ we can write: 

 
zp

q
xp ∆∆

21δ 2
εεγγ ++=  (42) 

For the numerical examples comparable to the above case, we take ∆x = 50 m and 
∆z = 15 m, and compute p = 0.0002436 s/m and q = 0.0002661 s/m. We then obtain 

 ( ) εγ 421∆,∆ ≈++ qqpp   (SI units). (43) 

That is, for an error of 0.001 s in the traveltime measurements, we would have ε = 
0.0014 s, i.e., for ∆t. Thus we get errors in γ of 0.0328 (13.1%) and 0.595 (238%) for 
the traveltime and slowness methods, respectively, a factor of about 18 difference. 

DISCUSSION AND CONCLUSIONS 
The proposed inversion scheme allows one to calculate the value of the Thomsen 

anisotropic parameter, γ, for horizontally layered TIV media. The information 
required for inversion consists of oblique traveltimes, layer thickness and vertical 
wave speeds. The acquisition context of vertical seismic profiles, with known source 
and receiver locations, is particularly suitable for this inversion scheme. Layer 
thickness can be obtained directly from wellbore information, while the vertical wave 
speed can be reliably established from the zero-offset survey. 

The inversion is expressly formulated for the case of elliptical anisotropy, which 
applies to both SH waves exactly and P waves in the short-spread approximation, and 
is characterized by a single Thomsen parameter, γ. Although in this paper the method 
is illustrated for a two-layer case, it can be modified for a multilayer setting. In such a 
scenario, the inversion is progressively iterated for deeper layers, once the parameters 
of all the shallower layers are known (Slawinski, 1996). 

The results of the traveltime inversion are quite sensitive to errors in the traveltime 
measurement (e.g., Monagan and Slawinski, 1998). However, greater reliability of the 
inversion results will be provided by a multiplicity of measurements. Under the 
assumption of TIV media, the same value of γ is expected for all source-receiver 
configurations where the receiver is located within the same layer. This property 
provides a measure of consistency. 

The anisotropic parameter, γ, is defined directly in terms of both vertical, β0, and 
horizontal, v(π/2), velocities [equation (5)]. In TIV media, the vertical velocity, β0, is 
measured directly and, in this inversion method, its value is assumed to be known. 
Thus, instead of inverting for the anisotropic parameter, γ, which contains both 
horizontal and vertical velocities, one could invert explicitly for the unknown 
horizontal phase velocity, v(π/2). Hence, from equations (4) and (21): 
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and the present inversion method entails finding the unique local minimum of v(π/2), 
as a function of r ∈ (0, X). Then, the value of the parameter γ can be obtained from its 
definition. Note that the propagation in TIV media implies that the magnitudes of 
phase and group velocities are the same along the symmetry axes. Therefore, for 
horizontal propagation in TIV media, group and phase angles coincide and equation 
(6) or (8) can be used to yield the magnitude of the horizontal group velocity, V(π/2), 
by setting the angle to π/2 in the above-mentioned equations, namely, 

( ) γβπ 212 0 +=V . 

Error analysis has shown that our direct traveltime technique has less error than the 
phase-slowness method. A numerical example representing a typical VSP yielded 
errors from the phase-slowness method that were about 25 times greater than for a 
single determination by the direct traveltime method. Furthermore, in cases where the 
VSP has been acquired with a single source offset, e.g., for some offshore wells, the 
direct traveltime method will at least yield some results, whereas the phase-slowness 
method will not. 
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