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ABSTRACT 
The presence of noise in a nonstationary signal (i.e., whose frequency content 

varies with time) complicates the extraction of meaningful information from the 
signal. The classical Fourier domain of such a signal can only separate the noise from 
the useful signal energy if they have different frequency content. For nonstationary 
signals the windowed Fourier transform has been introduced to localize the signal in 
time. The windowing is accomplished by a weight function that places less emphasis 
near an interval's endpoints than in the middle. The short-time Fourier transform 
(STFT) thereby decomposes a signal into a time frequency plane. Nonstationary 
filtering can be done by prescribing weights that vary with time and frequency, which 
are applied to the decomposed data. An inverse STFT then reconstructs the filtered 
signal. Recently, the wavelet transform (WT) has been applied in diverse fields such 
as mathematics, quantum physics, engineering and geophysics. The WT decomposes 
a signal in a time-scale frame. The seismic data can be filtered using the WT in a 
form similar to time-frequency filtering techniques. This paper explores a method of 
filtering seismic data using the discrete wavelet transform (DWT) with filter weights 
in the wavelet domain using a time-domain semblance measure. The semblance 
coefficients, as a measure of multichannel coherence, serve to emphasise the signal in 
the wavelet coefficients of the decomposed trace. This method has been tested on a 
Blackfoot final stack where it appears to improve the resolution of the section.  

 INTRODUCTION  
The time-variant filtering technique was implemented to suppress nonstationary 

noise bursts in seismic data. To compensate for the limitations of the classical Fourier 
transform, the STFT was first introduced (Cohen, 1995). The windowed Fourier 
transform is the most widely used method for studying nonstationary signals. The 
time-variant spectrum (TVS) is a decomposition of a signal onto a time-frequency 
matrix. The TVS(τ, f) (Schoepp, 1998) is calculated by taking the STFT: 
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where s(t) is the signal and h(t-τ) is a time-shifted window with τ the fixed time and t  
the running time. The window width and the window increment are important 
parameters in the TVS computation. The width of the time window is determined by 
a fixed positive constant. In all of the STFT methods, (depending on the windows 
used) computational complexities arise when either narrowing of the window is 
required for better localization or widening of the window is required to obtain a 
better spectral resolution (Chui, 1992). A whitening technique applied to the TVS of 



Iliescu and Margrave 

 CREWES Research Report � Volume 12 (2000)  

data (a stacked section from the Blackfoot broad band survey) will be used in this test 
to equalize the Fourier spectrum and therefore, the resolution. In comparison, the WT 
distinguishes itself from the STFT in that it has a zoom-in and zoom-out capability. 
Unlike the STFT in which the length of the window is fixed, the WT localizes signals 
in a variable window determined by the scale parameter.  

The WT is a relatively new signal analysis and processing approach. There are few 
applications of the wavelet transform in geophysical data processing. Some examples 
are: data compression (Donoho, Ergas and Villasenor, 1995), time frequency analysis, 
filtering and interpretation using frequency-time plots (Chakraborty and Okaya, 
1994), and phase correction using the wavelet transform (Rodriguez and Mansar, 
1997). The WT of a signal decaying in time depends on two variables: scale and time. 
The strength of the WT representation is the separation of the signal in different scale 
levels. The result of the wavelet decomposition consists of coefficients that are 
influenced by local events that can be potentially identified, analysed, and filtered. 
The WT was used to filter the stacked section by applying weights to the wavelet 
coefficients. The weights are based on semblance in t-x domain.  

MATHEMATICAL BACKGROUND  
The WT is, like the Fourier transform, an inner product between the signal and a 

set of basis functions. The expansion coefficients reflect the similarity between the 
signal and the elementary basis functions. The elementary functions are also called 
analysis functions. The result of the inner product represents the expansion coefficient 
and the set of all expansion coefficients represents the wavelet domain.  

There are many types of wavelet transforms. The most important are the 
continuous wavelet transform (CWT) and the discrete wavelet transform (DWT). 

The CWT 
The CWT can be thought of as the inner product of the signal with the basis 

functions ψa,b(t), (Daubechies, 1992) (ψ(t) is called the mother wavelet).  
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In this expression, ψa,b*(t) is the complex conjugate of 
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for ψ(t) real, ψ* = ψ. 

The scale index, a, can be thought as the reciprocal of the frequency while b indicates 
time shifting (or translation). The normalizing constant a�1/2  is chosen so that the total 
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energy of the wavelet in the time domain is equal to the energy in the frequency 
domain. The wavelet energy can be expressed in the form: 
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where the  ||ψa,b)|| represents the Euclidean norm. Equation (4) represents Parseval's 
theorem applied to the wavelet and states that the total energy  should be the integral 
of 2)(ωΨ , (where Ψ(ω) is the Fourier spectrum of the wavelet) over all frequencies 
and should equal the total energy of the wavelet in the time domain. This property can 
be extended to the signal in the wavelet domain (Qian. and Chen., 1996):  

 
dadb

a

CWT
C

ts ba
∫∫∫
∞

∞−

∞

∞−

∞

∞−

= 2
),(

2
1)(
ψ , (5) 

where Cψ should satisfy the admissibility condition given by: 
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This theorem states that the weighted energy of the wavelet transform of the signal is 
equal to the energy of the signal in the time domain. When a is small, which 
corresponds to small support length, the wavelet transform picks up higher frequency 
components. If the admissibility condition is not satisfied the reconstruction is not 
possible because the inverse wavelet transform will diverge. 

The coefficients of the CWT measure the closeness of the signal to the wavelet at 
the current scale. If the signal has a major component of the frequency corresponding 
to the current scale, then the wavelet at the current scale will be similar or close to the 
signal at the particular location where this frequency component occurs. Therefore, 
the CWT coefficient computed at this point in the time scale plane will be a relatively 
large number. The definition of the CWT shows that the wavelet analysis is a 
measure of similarity between the basis functions (wavelets) and the signal itself. 
Here, the similarity is in the sense of similar frequency content (Qian and Chen, 
1996). 

The inverse transform of the CWT is given by : 
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A perfect reconstruction of the signal is possible, but depends on the choice of the 
elementary function ψa,b(t). The CWT is highly redundant and therefore is 
computationally time consuming. The DWT computes only those scales and 
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translations needed for a complete representation and reconstruction of the signal. For 
this reason, the DWT is more efficient and has been used in this experiment. 

 

The DWT and multi-resolution analysis 
In the discrete wavelet transform (DWT), the dilation parameter a and the 

translation parameter b take only selected discrete values. Besides the CWT, another 
way to introduce wavelets is through multi-resolution analysis (MRA) (Mallat, 1999). 
The concept of the MRA is the key to the construction of orthogonal wavelet bases 
and to the fast decomposition of a signal into frequency bands. If s(t) is a signal from 
a certain subspace V-1 ∈ L2 (R), a decomposition is performed into a high and low-
frequency part. The low-frequency part, P0S (called the approximation coefficients) is 
obtained by an orthogonal projection into a smaller subspace V0 ⊂ V-1 which contains 
only the smoothed functions of V-1. The orthogonal complement of V0 in V-1 will be 
denoted by W0. The projection of the signal s(t) into W0 will be denoted by Q0S 
(called the detail coefficients). 

 In this way we have s(t)= P0S + Q0S  (V-1 = V0 ⊕ W0). The procedure can be 
repeated to decompose P0S into a coarser level of approximation and detail and so on. 
The result is an MRA of L2 (R) (the space of finite energy functions) defined as a 
sequence of closed subspaces Vk of L2 (R), k ∈ Z, with the following properties: 

1.    ... V2  ⊂ V1  ⊂ V0  ⊂ V-1  ⊂  V-2 ...; 

2. s(t) ∈Vk  ⇔  s(2k t) ∈V0, 

3. s(t) ∈Vk  ⇔  s(t+1) ∈  Vk     

4. ∪
∞

−∞=j
jV is dense in L2 (R) and ∩

∞

−∞=j
jV ={0}, 

5. A scaling function φ ∈V0, with a non vanishing integral exists such that the set of 
{φ(t-l) | l ∈Z} is an orthonormal basis for V0, then there exist ψ   such that  
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holds (Daubechies, 1992). 

Some of these properties are more of a technical nature. The essential properties 
are (2) which expresses the fact that all spaces of an MRA are scaled versions of the 
base space V0. and (5) which implies that φ  and ψ  should be in a complementary 
relationship. Since φ ∈V0 ⊂ V-1 and the φ−1,l(t) = 21/2 φ (2t-l) is an orthonormal basis 
for V-1 , there exist  αl= 21/2 〈φ, φ−1,l〉  so that φ(t)=Σl φ (2t-l). This leads to the relation 
between φ  and ψ, ψ(t)=Σl (-1)lα−l +1 φ (2t-l) (Daubechies, 1992). The space V0.  itself 
is spanned by shifted versions of the so-called scaling function φ.  

(8)
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To understand the MRA concept the Haar function is convenient. The Haar scaling 
function is defined as φ(t) = 1 for  0  <  t  < 1,  φ(t) = 0 otherwise. Then there exists a 
function ψ  and a family ψkj defined by:  

 
)2(2)( 2

, jtt k
k

jk −= −−
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, (9) 

For k fixed, the ψj 's are orthonormal bases  (they never overlap) of the orthogonal 
complement Wk  of Vk in Vk-1. In Figures 1a and 1b the Haar scaling wavelet and the 
Haar analyzing function are shown.  

 
Figure 1a. Haar scaling function or father 
wavelet. 

Figure 1b. Haar analyzing function or 
mother wavelet. 

The formula (9), represents a scaled version the of mother wavelet ψ(t). The ψk,j(t) 
is a family of wavelet functions generated from the mother wavelet through dilatation 
determined by the parameter k (a in the continuous case) which governs frequency 
and shift controlled by the parameter j which determines translation (b in the 
continuous case). For any scale 2-k, {ψk,j(t)}k∈Z is an orthonormal basis of Wk. For all 
scales, {ψk,j(t)}k∈Z is an orthonormal basis of L2(R) (Mallat, 1999). 

Similarly, φk,j (t), represent the scaling functions. The family {φk,j (t)} k∈Z is an 
orthonormal basis of Vk , (Mallat, 1997).  

The functions φ (t) and ψ (t) are used to measure the signal�s local behaviour, that 
is: the scaling functions φ (t) and analyzing wavelets ψ (t) are localized in both time 
and frequency. All the functions that are used are the dilated (or compressed) and 
shifted versions of the mother wavelet and scaling function. In addition, φ (t) should 
be consistent with the averaging interpretation, that is,  

 ∫ = 1)( dttφ
, (10) 

and the analyzing wavelet should be consistent with the differencing interpretation,  
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 ∫ = 0)( dttψ
, (11) 

(ψ(t)   is a function of zero mean). These properties can be observed in Figures 1a, 
and 1b of the Haar wavelets. There are infinitely many function families that satisfy 
these conditions and can be used as a wavelet basis. The selection of a particular basis 
is a major and difficult decision in a practical wavelet application.  

Using the MRA concept, the DWT can be implemented by high- and low-pass 
filters that successively decompose the input signal by dyadic downsampling 
(decimated) convolutions (Mallat, 1999). An arbitrary signal can be represented in 
such way by the formula: 
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For k (level of decomposition) fixed: 
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If k = 1, cj

1 represent the coefficients of the projection P1S of s in the space V1 and dj
1 

represents the coefficients of the projection Q1S of s in the space W1 (Keller, 2000). 

The variables of g and h represent the filter coefficients of the high, respectively 
low pass filters. The coefficients dj

(1) are already a final result. They are the 
coefficients of the wavelet spectrum of s on the scale 1. In order to obtain the wavelet 
spectrum on the coarser scales 2, 3, 4 and so on, the procedure will be repeated for cj

1. 
The two equations (13) and (14) constitute the Mallat's algorithm for the fast 
computation of the wavelet coefficients of an arbitrary signal s. This procedure can be 
described using decomposition operators H and G.  
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This leads to the scheme for the computation of the wavelet spectrum shown in 
Figure 2. In this example the decomposition goes up to the fourth level, with level 1 
containing the highest frequency components. 
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Figure 2. Scheme of the wavelet domain for four levels of decomposition. Those boxes inside 
the curve form the DWT. 

 

This transform is invertible and the signal is recovered by  
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METHODOLOGY  
The WT is used here to filter seismic data in a time-frequency sense. The primary 

consideration is how to chose a set of weights to apply them to the WT coefficients. 
There are infinitely many possible schemes for this. In this paper we investigate the 
use of a time-domain semblance measure to prescribe the weights. 

The filtering was applied to a final stack (Figure 3) of a 2D line from the Blackfoot 
broad band survey data, recorded in 1995 over the Blackfoot field, owned by 
PanCanadian (located near Strathmore, Alberta, Township 23, Range 23, West of 4th 
Meridian). The targets are Glauconitic channels in the Lower Mannville Group of the 
Lower Cretaceous. 
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Figure 3. The Blackfoot stacked section. 

 

 

Figure 4. Detail of the Figure 3. The target (Glauconitic channel) extends from the Shot point 
170 to 180 between the coal and the Mississippian.  

Coal 

Mississippian 
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The following procedure was used for WT filtering. 

1. Select the desired orthonormal basis (i.e. what wavelet will be used) and a 
level of decomposition. 

2. Calculate multichannel semblance coefficients with smoothing operators of 
different sizes for the stacked section.  

3. Apply the WT to the seismic traces from the stacked section. 

4. Apply the WT to the semblance traces. This should extend to the same level 
of decomposition as for the seismic traces. 

5. Weight the wavelet coefficients of the seismic traces with the wavelet 
coefficients of the semblance traces, that is, multiply their wavelet transforms 
together. 

6. Inverse transform the filtered wavelet coefficients. 

7. Apply a time variant spectral whitening (TVSW) operator to the WT filtered 
stack. 

1. Basis selection and decomposition level 
The Battle-Lemarie (Daubechies, 1992) wavelet was used in this research because 

of its good localization in time and frequency. The wavelet transform provides a time-
frequency picture and a good localization in both variables is desired. The Haar 
wavelet described in the representation of the MRA has a poor localization in 
frequency. Figures 5a and 5b illustrate the amplitude spectrum of the Haar scaling 
function and the Haar analyzing wavelet.  

Figure 5a. Haar scaling function in frequency 
domain. 

 

Figure 5b. Haar analyzing function in 
frequency domain. 
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The Battle-Lemarie wavelets (in figures 6a, 6b, 6c, and 6d) are spline functions 
with fast exponential decay in time. In the frequency domain they have a good 
localization and they have been used in this experiment. According to the Heisenberg 
uncertainty principle there is a trade off for exponential decay in either time or 
frequency; one cannot have both (Cohen, 1995). Initially the Battle-Lemarie wavelets 
have been used in quantum field theory (Daubechies, 1992). Figures 6a - 6d show the 
representation of the Battle-Lemarie scaling and analyzing functions in time and 
frequency. 

Figure 6a. Battle -Lemarie scaling function. 

 

 
Figure 6b. Battle-Lemarie analyzing function. 

Figure 6c. Battle - Lemarie scaling function 
in frequency domain. 

 

Figure 6d. Battle-Lemarie scaling function in 
frequency domain. 

 

Using Mallat's algorithm, the level of decomposition was chosen, after 
considerable experimentation, to be level 2. The stacked section was first 
decomposed, trace by trace, up to the maximum level, i.e. for a trace of 1500 samples, 
prior to decomposition a padding to the next power of 2 is mandatory. The maximum 
level for the padded trace is 11 (211=2048). 

For the level 1 of decomposition, there is 1 set of approximation coefficients and 
one set of detail coefficients. The highest frequencies of the signal are in the detail 
part of decomposition whereas the lowest frequencies are in the approximation part of 
the decomposition. For the level 2 of decomposition, the approximation coefficients 
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1.6 

of the level 1 which represents a smoothed version of the original signal 
downsampled by 2 is again decomposed into another level of detail coefficients 
which contain the highest frequencies for this level and a set of approximation 
coefficients. Level 2 implies that the trace in wavelet domain is composed of the 
detail coefficients of level 1, detail coefficients of level 2 (coarser than 1), and 
approximation coefficients of level 2, all of them localized in time. The Blackfoot 
stacked section decomposed for level 2 is illustrated in Figure 7. 

  

Figure 7. The Blackfoot Stacked section decomposed with Mallat�s algorithm to level 2.  The 
approximation and detail coefficients are localized in time. 

2. Calculation of Semblance coefficients. 
In this study, time-domain semblance coefficients were calculated by: 
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where a is a small averaging function, S is the seismic data matrix, ∆ is a normalizing 
constant that depends on a, and • denotes a 2D convolution. In this study, a was a 2D 
boxcar n traces wide and N samples high.  

Currently, coherence measurements are used to detect stratigraphic features and 
faults and are one of the most important properties of seismic reflection data 
(Bahorich and Farmer, 1994). Among the formulations that exist for obtaining 
coherence estimates are cross correlation, semblance, and eigendecomposition of the 
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data covariance matrix (Gersztenkorn and Marfurt, 1999). In the Blackfoot 
experiment a semblance algorithm was used. The semblance, as a measure of 
multichannel coherence can be calculated using different sizes of an operator. An 
operator higher than 31 samples (15 ms) in the case of the Blackfoot data will blur 
stratigraphy associated with both deeper and shallower times about the zone of 
interest. Of the same importance is the width of the semblance operator for the lateral 
extent of the interest zones. In the case of Blackfoot data, an operator wider than 25 
traces will also smear the lateral extent of the zone of interest (i.e. the Glauconitic 
incised valleys). The semblance operators with good results in this experiment are: 
9x3, 3x9, and 5x15.  

3. Apply the WT to the seismic traces from the stacked section 
The wavelet transform based on Mallat�s algorithm was performed on the stacked 

section to the second level of decomposition. The stacked section in the wavelet 
domain is illustrated in Figure 7. In this decomposition the Battle-Lemarie wavelet 
illustrated in Figures 6 was used. The WT was applied to the stacked section or to the 
whitened stacked section. 

 

4. Apply the WT to the semblance traces 
The semblance parameters calculated for different operators shown in step 2 were 

decomposed in the same way as the stacked section, with the same wavelet, and to the 
same level of decomposition, respectively 2.  

5. Weight the wavelet coefficients of the seismic traces with the wavelet 
coefficients of the semblance traces.  

In the wavelet domain the wavelet coefficients of the stacked section and the 
wavelet coefficients of the semblance parameters were multiplied. Thus, a 
decomposition like that of Figure 7 was also performed on the semblance measures 
(in step #4), then, the two matrices of the wavelet coefficients are multiplied together 
in a point by point fashion. The resulting matrix of weighted coefficients is the 
wavelet transform of the filtered data. The steps #4 and #5 were performed for 
different sizes of the semblance operator (9x3,3x9,and 5x15). 

6. Inverse transform the filtered wavelet coefficients. 
The inverse transform of the wavelet coefficients of the stacked section weighted 

by the wavelet coefficients of the semblance parameters was performed. The stacked 
sections resulted for different sizes of the semblance operators are illustrated in the 
Figures (8 � 33) and explained in the chapter Discussion of results. 
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7. Apply a time variant spectral whitening (TVSW) operator to the WT filtered 
stack. 

A TVSW operator was applied to the input data and to the filtered results because 
it equalizes the Fourier spectrum and therefore, the resolution. The lowest frequency 
whitened was 5 Hz and the highest 90 Hz. The spectral whitening operator is 
composed of a set of Gaussian filters. The length of the AGC operator was 0.8 
seconds and on every trace 10 Gaussian slices were applied. The TVSW operator was 
applied a second time for the cases were the WT filtering was performed on the 
already whitened section.  

DISCUSSION OF RESULTS 
Figure 8 illustrates the Blackfoot stacked section after the TVSW was applied. 

Figure 9 represents a detail over the zone of interest in wiggle trace mode. Figures 3 
(the original data), 4 (detail of Figure 3), 8, and 9 serve as references in this study.  

In Figure 10, a semblance operator of 9x3 served in filtering the data. The stacked 
section preserves the major reflectors and the unconformity of the Mississippian is 
better represented than in Figure 3. In detail (Figure 11), it can be observed that a lot 
of non-coherent noise has been removed, but the major events are very well 
preserved. The valley of the Glauconitic channel can be distinguished between the 
shot-points 170 � 180. Figure 12 illustrates the Blackfoot WT filtered section after the 
TVSW was applied. In detail (Figure 13), it can be observed that the section gained 
resolution and this time the limits of the channel are very well defined. 

 The WT filter was also applied to the whitened stacked section. Figure 14 
illustrates the stacked section previously whitened and secondly WT filtered. The 
major events are preserved and there are many similarities with the stacked section in 
Figure 10. The major limits are very well preserved and the whole character of the 
section is the same as in Figure 10. After TVSW and WT filter were applied to the 
data, a second whitening was performed to regain the resolution. From Figure 16 it 
can be observed that the resolution is boosted and the Glauconitic channel, the 
Mississippian unconformity and the coal layer above the channel are very well 
delineated. Comparing Figures 9, 13 , and 17 the details are better enlightened after 
the WT filter was applied.  

The second semblance operator used was a 3x9 boxcar. Figure 18 shows 
similarities with Figure 10 and 14. The major events have been preserved and the 
non-coherent noise has been suppressed. The TVSW was applied to the section and 
the resolution has been improved. Comparing Figures 21 and 9, the details in the WT 
filtered section (21) are better delineated. The lateral extent of the channel is much 
better illustrated in Figures 21 (3x9 semblance operator) and 13 (9x3 semblance 
operator) than in Figure 9.  

As in the case of the WT filter with a 9x3 semblance operator, the WT filter with a 
3x9 semblance operator has also been applied to the whitened section in Figure 22. 
The major events has been preserved and enlightened. To increase the resolution the 
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TVSW filter has been applied second time, after the WT filtering. Figure 24 and the 
detail in the wiggle trace mode (Figure 25) can be compared to Figures 8, 9, 16 and 
17. For the 3x9 operator used in WT filtering, as in the case of the 9x3, described 
above, it can be observed that in either case, applied directly to the stacked section 
followed by a whitening, of the data, or applied to the whitened section, followed by 
another whitening of the data, the lateral and vertical extents of the subtle features in 
the section are better delineated.  

The results of the WT filter that uses a 5x15 semblance operator are the final test 
in this study. In Figure 26, the stacked section preserves the major reflectors and the 
unconformity of the Mississippian is again, better represented than in Figure 3. In 
detail (Figure 27), it can be observed that a lot of non-coherent noise has been 
attenuated, but the major events are very well preserved. The valley of the 
Glauconitic channel can be distinguished between the shot-points 170 � 180. Figure 
29 illustrates the Blackfoot stacked section after the TVSW was applied. In detail 
(Figure 29), it can be observed that the section gained additional resolution and this 
time the lateral and vertical extend of the channel are very well delineated. Figure 29 
can be compared to Figures 9, 13 and 21. There are some differences between Figures 
13, 21 and 29, due to the size of the boxcar used for calculating the semblance.  

 The WT filter (with the 5x15 semblance operator) was also applied to the 
whitened stacked section. Figure 30, illustrates the stacked section previously 
whitened and secondly WT filtered. The major events are preserved and there are 
many similarities with the stacked section in Figure 26. The major limits are very 
well preserved and the whole character of the section is the same as in Figure 26. A 
second whitening was performed to increase the resolution. From Figure 32 it can be 
observed that the resolution is increased and the Glauconitic channel, the 
Mississippian unconformity and the coal layer above the channel are very well 
delineated. but slightly different than in the cases of other semblance operators used 
in WT filtering (compare Figures 9 as the reference, with Figures 17, 25 and 33). 

CONCLUSIONS 
A new filtering technique has been tested. This method is based on wavelet 

transform and semblance measurements on a stacked section. The total resolution 
seems to be improved as a consequence of this technique. Prior to applying the WT 
filtering by semblance weighting it is essential to eliminate the coherent noise such as 
multiples and shallow reflections. This technique increases the resolution of subtle 
stratigraphic features, such as Glauconitic channels. 

In the first case the WT filtering technique was applied to the final stack followed 
by a time variant spectral whitening. In the second case, the spectral whitening was 
applied before and after the WT filtering. The wiggle trace representations illustrate 
in detail the effect of the WT filtering on the stacked section. As a result of this 
method the stacked section appears cleaner with a better coherence for subtle details, 
filtering the non-coherent energy around them. Comparing the results obtained with 
different semblance operators (9x3, 3x9,and 5x15) it can be observed that the lateral 
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coherency increases due to the lateral enlargement of the semblance operator (3, 9 
respectively 15).  

FUTURE WORK 
All of the results in this study need to be migrated. This will help to determine if a 

true improvement in resolution has been attained. 

This method should be developed in more detail and tested on different data such 
as models and different sets of real data. Models with different Q attenuation factors 
will be constructed. Secondly, random noise at different signal to noise ratio will be 
added to the model. The W.T. filter will be compared to other more traditional 
methods of signal enhancement such as spatial prediction.   

The semblance can also be estimated in the wavelet domain, similar to calculating 
the time-variant F-X spectra in the Fourier domain (Margrave, 1999). A new method 
of estimating the signal bend can be developed in the wavelet domain. These WT 
semblance estimates can also be used as filter weights. This WT filter will also be 
examined for ground roll suppression on shot records. It will be compared with more 
traditional approaches such as F-K filtering.  
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EXAMPLES 
 

  

Figure 8. Similar to Figure 3 except that the data has been through TVSW. 

 

Figure 9. Detail of the Figure 8. (To be compared with Figure 4) 
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Figure 10. The Blackfoot data, after WT filtering, a 9x3 semblance operator was used. (To be 
compared with Figure 3) 

  

 

Figure 11. Detail of Figure 10. (To be compared with Figure 4) 
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Figure 12. Similar to Figure 10 (9x3 operator) except that the data has been through TVSW 
after the WT filtering. (To be compared with Figure 8) 

 

 

Figure 13. Detail of Figure 12. (To be compared with Figure 9) 
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Figure 14. This stacked section was previously whitened and then WT filtered. Semblance 
operator size = 9x3. (To be compared with Figure 8) 

 

 

Figure 15. Detail of Figure 14. (To be compared with Figure 9) 
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Figure 16. Similar to figure 14. The data has been through TVSW again after WT filtering 
(Semblance operator, 9x3). (To be compared with Figure 8) 

 

 

Figure 17. Detail of Figure 16. (To be compared with Figure 9) 
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Figure 18. The Blackfoot data, after WT filtering, a 3x9 semblance operator was used. (To be 
compared with Figure 3) 

 

 

Figure 19. Detail of Figure 18. (To be compared with Figures 4 and 11) 
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Figure 20. Similar to Figure 12 (3x9 operator) except that the data has been through TVSW 
after the WT filtering. (To be compared with Figures 8 and 16) 

 

 

Figure 21. Detail of Figure 20. (To be compared with Figures 9 and 13) 
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Figure 22. The stacked section was previously whitened and then WT filtered. Semblance 
operator size 3 x 9. (To be compared with Figures 8 and 16) 

 

 

Figure 23. Detail of Figure 22. (To be compared with Figures 9 and 17) 
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Figure 24. Similar to figure 22. The data has been through TVSW again after WT filtering 
(Semblance operator, 3x9). (To be compared with Figures 8 and 16) 

 

 

Figure 25. Detail of Figure 24. (To be compared with Figures 9 and 17) 
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Figure 26. The Blackfoot data, after WT filtering, a 5x15 semblance operator was used. (To 
be compared with Figures 3, 10 and 18) 

 

 

Figure 27. Detail of Figure 26. (To be compared with Figures 4, 11 and 19) 
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Figure 28. Similar to Figure 23 (5x15 operator) except that the data has been through TVSW 
after the WT filtering. (To be compared with Figures 8, 12 and 20) 

 

 

Figure 29. Detail of Figure 28. (To be compared with Figures 9, 13 and 21) 
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Figure 30. The stacked section was previously whitened and then WT filtered. Semblance 
operator size 5 x15. (To be compared with Figures 8, 14 and 22) 

 

.  

Figure 31. Detail of Figure 30. (To be compared with Figures 9, 15 and 23) 
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Figure32. Similar to figure 30. The data has been through TVSW again after WT filtering 
(Semblance operator, 5x15). (To be compared with Figures 8, 16 and 24) 

 

 

Figure 33. Detail of Figure 32. (To be compared with Figures 9, 17 and 25) 


