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Simulation of elastic moduli for porous materials 

Charles P. Ursenbach 

ABSTRACT 
A simulation method is employed to simulate elastic moduli of porous materials, 

including error estimation.  The ratio of porous elastic moduli to their non-porous 
counterparts is obtained for isotropic skeletal materials with a Poisson�s ratio of ¼.  
Three cases are modeled: 1). The spherical pores are non-overlapping but otherwise 
randomly distributed spheres, 2) the spherical pores are randomly distributed 
(overlapping) spheres, and 3) the pores are exclusions created from randomly 
distributed, overlapping spheres of matrix material.  In all cases the pores are empty 
and the spheres are uniform in size.  The results show that Norris� differential 
effective medium theory describes overlapping spheres well, particularly 
compressional properties, and the Kuster-Toksöz model is moderately accurate for 
non-overlapping spheres.  The CPA gives the closest description of the spherical 
exclusions, but it is still poor. 

INTRODUCTION 
A fundamental problem in processing reservoir data is understanding how elastic 

properties vary with porosity, as such information provides input to the Biot-
Gassmann theories.  A variety of theories have been developed to address this 
problem.  The Kuster-Toksöz (Kuster, 1974) method based on scattering theory 
assumes that pores are dilute and non-overlapping.  The differential effective medium 
(DEM) theory can also describe non-overlapping pores (Zimmerman, 1984) or 
overlapping pores (Norris, 1985).  The simplest form of these theories is obtained for 
the case of spherical pores in isotropic media, and these have been reviewed by 
Zimmerman (1991).  The CPA theory (Berryman, 1992) treats pores and matrix 
symmetrically, and in that sense is more likely to apply to spherical exclusions. 

Comparison of various theories against experiment can be found in Berge et al. 
(1993) and Zimmerman (1991).  In these studies, glass foam (with a bulk glass 
Poisson�s ratio of σ = 0.23) is treated as having uniform spherical pores.  Berge et al. 
find that the compressional velocity (VP) of glass foam is intermediate between the 
Kuster-Toksöz model [equivalent in this case to the Hashin model (Hashin, 1962)] 
and Norris� DEM [although comparison with Zimmerman�s DEM would be more 
appropriate, as glass foam consists of non-overlapping pores (Walsh, 1965)].  
Zimmerman finds similar results for the normalized bulk modulus.  Berge et al. also 
studied fused glass beads, which are more similar to spherical exclusions (but non-
overlapping) and found them to be well described by the CPA theory.   

Such results are as those above are useful, but suffer from the drawback that one is 
dealing with errors both from theoretical approximations as well as from the 
incongruence of real substances with ideal pore models.  Simulation is very helpful in 
this regard, as it allows one to assess theoretical results directly against pseudo-
experimental data for the idealized pore models, with only well-controlled errors 
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resulting from the simulation.  Thus the purpose of this study is to carry out 
assessment of theory analogous to the above references (Berge, 1993; Zimmerman, 
1991) but using simulation data instead of experimental data. 

Such simulation methods, while not yet widely used in the rock physics 
community, are not new either.  A number of workers in composite materials have 
carried out simulations of matter with spherical inclusions using a variety of 
simulation models, such as a point mass and spring lattice model (Day et al., 1992; 
Snyder et al., 1992), or the more general finite element method (Garboczi & Day, 
1995; Chen et al., 1995), or boundary element methods (Eischen, 1993; Helsing, 
1995; Christiansson, 1996).  Indeed, seismic wave propagation problems have also 
been studied using spring lattice methods (Krebes, 1987; Paranjape et al., 1987; 
Scales, 2000). In the rock physics realm, Poutet et al. (1996) have performed a 
valuable simulation study on the physics of various pore arrangements.  Thus there is 
a considerable history of application that can be adapted to rock physical problems.   

DESCRIPTION OF SIMULATION METHOD 
This study employs the point mass and spring lattice simulation model.  While not 

as general as the finite element method, it is very simple and intuitive.  Continuum 
matter is modeled as a collection of point masses connected by springs in a regular 
lattice.  Certain conditions must be placed upon the springs in order for the lattice to 
model an elastic material.  For instance, suppose we are modeling isotropic matter, 
with a specified density and Lamé�s constants, µ and λ.  Then displacements in the 
lattice and the resulting stresses should be related by the following well-known 
equation: 
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Suppose that we have a simple cubic array of point masses (where each mass is 
given by the density times the cubic grid element volume).  Let nearest neighbours be 
connected by springs with a force constant of k1.  An analysis of this system reveals 
that to linear order the stress-strain relation would be 
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where dl is the nearest neighbour grid distance.  This clearly cannot represent elastic 
material for any value of k1.  Suppose one chooses instead to place springs between 
next-nearest neighbours (k2), or next-next-nearest neighbours (k3).  These choices 
result in 
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Again, neither of these matrices is consistent with elastic matter.  However, by 
combining any two of the above types of spring one can represent an elastic Poisson 
solid (µ=λ).  As pointed out by Krebes (private communication), to obtain the µ≠λ 
case requires, for instance, a hinge spring between three masses forming a right angle.  
This spring would yield a matrix of the form 
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which can be combined with two of the above spring types to yield a general elastic 
solid.  In this study I have modeled a Poisson solid with k1 and k3 springs (this choice 
minimizes the number of springs).  

Various workers (Montroll, 1947; Gazis et al., 1960; Krebes, 1987; Paranjape et 
al., 1987) have implemented this model using a Lagrangian formulation.  In this study 
it has been implemented by discretizing Newton�s second law in a manner analogous 
to molecular simulation techniques (e.g., Allen and Tildesley, 1987).  Periodic 
boundary conditions are applied.  Pore locations are generated from random numbers, 
and pores are created by eliminating point masses and springs in the pore region.   

To calculate the bulk modulus, a small compression is applied by rescaling the 
location of all point masses from their equilibrium positions.  For a porous solid this 
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results in unbalanced forces on the masses, and their positions are allowed to relax to 
equilibrium, which generally shrinks the pore regions further.  Viscous forces are 
applied to the masses to approximate critical damping in this process.  At equilibrium 
the bulk modulus is calculated from the change in energy via the relation δE = ½ K 
(δV/V)2. 

The shear modulus is calculated in a similar manner, except that a volume-
preserving distortion is applied instead, such as a shear strain, or a compression in one 
direction and compensating extension in the others.  For a single shear strain the 
modulus is extracted using δE = ½ µ εij

2. 

SOURCES OF ERROR 
For simulation results to be maximally useful, it is critical to produce error bars for 

the results.  Six sources of error were identified in these simulations.  Two are trivial, 
two result from the finite size of the simulation cell, and two from the discrete grid 
representation. 

Trivial sources of error 
One source of error arises from the fact that the energy is never fully minimized 

due to the iterative approach.  Appropriate choice of a convergence criterion however 
ensures that this is not a significant source of error.  Similarly, the non-linear 
dependence of effective stress on strain means that the calculated moduli are, strictly 
speaking, strain dependent.  Choosing a small enough strain however produces a 
result in the linear domain, so the results are strain independent. 

Finite-sample sources of error 
In Figure 1 below, a two-dimensional cartoon illustrates that a variety of different 

configurations are consistent with a given porosity and pore size.  Yet they will all 
have distinct elastic moduli.  The true modulus (for this sample size) is obtained by 
averaging over the moduli of every such configuration possible.  This is clearly 
impossible, and we must be satisfied with a finite number of configurations.  This 
introduces one source of error, which can be expressed quantitatively as the standard 
deviation of values obtained (which we denote FW), divided by the square root of the 
number of configurations. 
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FIG. 1. Schematic two-dimensional representation of various configurations of non-
overlapping spherical pores in a simulation cell of fixed size. 

Yet even if one could employ an infinite number of configurations, one would still 
not obtain the correct result.  For this one would require an infinitely large simulation 
cell (or pore sizes infinitesimally smaller than the cell size).  This is illustrated in 
Figure 2 below, where it is clear that averages over all configurations of the two 
models shown will not give identical results.  The error of the average we will denote 
FA.  (Incidentally, if one had an infinitely large simulation cell, one would also need 
to generate only one configuration, i.e., FW divided by the simulation result would 
approach zero.) 

 

FIG. 2.  A schematic illustrating that the average over configurations in a large simulation cell 
is not equivalent to the average for a periodically repeated small cell.  
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Discrete-grid sources of error 
The discussion above of finite-sample errors assumes that the energy of any one 

configuration can be known exactly.  However, because the skeletal material is 
represented by discrete points of matter, arbitrary pore shapes cannot be represented 
exactly.  In fact, because of the periodic boundary conditions, a random translation of 
any pore configuration should not change the energy for perfectly represented pores, 
but a grid representation will result in a distribution of values (with standard deviation 
GW), as illustrated in Figure 3 below. 

 

FIG. 3.  Schematic illustration of how the translation of a perfectly round pore in a simulation 
cell can result in a change of shape of the pore when it is represented on a discrete grid. 

Supposing then that one averages over all possible translations of a given 
configuration, one will still obtain a result that depends on grid size.  The error of 
this, compared to the exact value for that configuration, we will denote GA.  As the 
grid size decreases, as illustrated in Figure 4, the pore description will improve and 
one will approach a smaller distribution of more correct values. 
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FIG. 4.  A schematic drawing illustrating that finer grids are able to represent arbitrarily 
shaped pores more accurately than coarse grids. 

Combined sources of error 
The various concepts above are illustrated in a practical way in Figure 5, which 

presents results from actual simulations.  Each point represents one simulation, and 
the normalized bulk modulus is plotted against the grid spacing in a cell of fixed size.  
The crosses represent simulations of a variety of configurations, while the circles 
represent simulations of one single pore configuration, translated randomly to various 
locations within the unit cell.  It is clear that, for the parameters employed here, the 
distribution of values for one configuration (GW) is far smaller than the distribution 
for an ensemble of configurations (FW).  It is also clear that the distribution due to 
grid size increases with grid size (empirically, it increases as the square of the grid 
width), while the configurational distribution is independent of grid size, as expected.  
Furthermore, values for one configuration vary roughly linearly with grid size, with 
approximately the same slope for each configuration, so that one can estimate the 
infinitesimal grid width value, both for individual configurations and for the average. 



Ursenbach 

90 CREWES Research Report — Volume 13 (2001)  

 

FIG. 5. The result of simulations for non-overlapping spherical pores with φ = 0.2.  Each cross 
represents a different configuration of pores, while all the circles at a given grid width 
represent one single configuration translated to various locations in the cell.  The distribution 
of crosses is FW and the distribution of circles is GW.  Note the linear behavior of each 
configuration that permits approximate extrapolation back to zero grid width. 

In the above figure the cell size is fixed and the grid width varies.  The opposite 
case is shown in Figure 6, below which displays results of simulations for various 
configurations and cell sizes but with fixed porosity, grid width, and pore size.  The 
observed change in FW with cell size is found empirically to vary as (r/L)3/2, where r 
is a pore dimension (e.g., radius) and L is a cell dimension (e.g., edge length). 
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FIG. 6. The result of simulations for non-overlapping spherical pores with φ = 0.1.  Each cross 
represents a different configuration of pores, and the distribution of crosses is FW.  Note that 
the average value converges rapidly (i.e., FA → 0) as the cell dimensions increase relative to 
the pore dimensions. 

A practical approach to error analysis emerges from these figures.  First, for 
suitably small grid widths, GW << FW, and will be ignored.  (It is actually subsumed in 
the latter.)  Next, GA will be approximately removed by linear extrapolation.  Finally, 
from Figure 6 it is appears that for sufficiently small pore:cell ratios, FA << FW.  Thus, 
after the extrapolation procedure, we assume that FW /√nconfig is the dominant error (if 
nconfig is not too large), and we assign it to be the error for the average of all values at 
a given porosity. 

In some of my earlier work a more approximate approach was used to estimate the 
error bars.  This was employed in the figures below for work on the spherical 
inclusions, while the above more general method was used for the spherical 
exclusions.  It can be seen below that the present method yields more rigorous error 
bars. 

RESULTS 
The spherical pore simulations were carried out on a 160 X 160 X 160 point grid.  

The spherical exclusion simulations were carried out on both a 160 X 160 X 160 grid 
(nconfig = 3) and a 80 X 80 X 80 grid (nconfig = 60).  Note that computer time varies as 
N4 on an N X N X N grid.  Typical runs required several hours on a modern Sun 
Workstation to achieve adequate energy convergence.  The simulation samples were 
compressed by .04% or less in each dimension.  The calculated elastic moduli are 
scaled by their pure bulk values, and are thus independent of the actual values of host 
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density and moduli.  The spheres are in all cases uniform in size, and the pure bulk 
Poisson�s ratio is ¼.  The simulation results for bulk and shear moduli (K and µ) are 
shown in Figures 7and 8 below, normalized by their bulk values. Six other derived 
quantities are shown in Figures 9 through 14. 

The first derived quantity is the λ constant (see Figure 9), obtained as λ = K − 
(2/3) µ, or λ/λ0 = (5/3)K/K0 − (2/3) µ/µ0 (since K0/λ0 = 5/3 and µ0/λ0 = 1 for the bulk 
Poisson ratio σ0 = 1/4).  Thus the propagated error is approximately double that in 
Figures 7 and 8 [∆(λ/λ0) = (5/3) ∆(K/K0) + (2/3) ∆(µ/µ0)].  Young�s modulus was 
calculated as well, and is shown in Figure 10.  The error bars are quite large for the 
spherical inclusions.  Poisson�s ratio was calculated but the propagated error is too 
large for the results to be useful, and they are not shown.  (A more appropriate 
approach to obtain E and σ would be by a simulation method which constrains ε11 
while allowing ε22 = ε33 to relax to a minimum energy state).  We can also obtain the 
P-velocity modulus, ρVP

2/ρ0VP,0
2 = (2/3)(µ/µ0) + (1/3)(λ/λ0), the error of which is 

similar to that of K and µ (see Figure 11).  This quantity could also have been 
obtained directly from a simulation using ε22 = ε33 = ε12 = ε13 = ε23 = 0, whereas λ, E, 
and σ  cannot be obtained directly from this simulation method.   

Noting that ρ/ρ0 is equal to 1 − φ, and that µ = ρVS
2, we can also calculate VP/VP,0  

and VS/VS,0 and their associated errors, as shown in Figures 12 and 13 below. 

 

FIG. 7.  The dependence of bulk modulus on porosity.   
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FIG. 9.  The dependence of shear modulus on porosity.   

 

FIG. 9.  The dependence of the λ modulus on porosity.   
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FIG. 10.  The dependence of the P-velocity modulus (or M) on porosity.   

 

FIG. 11.  The dependence of Young’s modulus on porosity.   
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FIG. 12.  The dependence of P-velocity on porosity.   

 

FIG. 13.  The dependence of shear velocity on porosity.   
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The final derived quantity to present is the pore bulk modulus, KP.  This is defined 
in the present notation by the expression 

 0

11
KKK P

−=φ
 (5) 

or, rearranging,  

 )/(1
)/(

0

0

0 KK
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K
K P

−
=

φ

. (6) 

Equation (5) is sometimes used to calculate the bulk modulus at some porosity, given 
the bulk modulus at another porosity, and assuming that the pore bulk modulus is 
independent of porosity.  The simulations give us the opportunity to test this 
assumption, and Figure 14 below suggests that it is a poor assumption. 

 

FIG. 14.  The dependence of pore bulk modulus on porosity.   

 

DISCUSSION 
Focussing now on comparison with theory, the overlapping sphere sample appears 

to be best described by Norris� DEM theory.  The shear modulus prediction is slightly 
low, but the bulk modulus prediction is excellent.  This is reminiscent of the study by 
Berge et al. (1993) which showed that Norris� DEM was reasonably accurate in 
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predicting the bulk modulus of porous glass.  However, porous glass contains non-
overlapping pores, so the apparent agreement must be partly due to the imperfect 
modeling of glass pores.  This serves to emphasize the key role of simulation studies 
in evaluating theory. 

Next one notes that simulation exhibits behaviour similar to theory in that non-
overlapping pores generally exhibit higher moduli than overlapping pores.  However, 
it appears that Zimmerman�s DEM, intended to represent non-overlapping pores, is 
not as accurate as the simpler Kuster-Toksöz model.  One weakness of the 
Zimmerman DEM is that it does not vanish, even for φ = 1, which is clearly 
unphysical.  In fact, simulation results for non-overlapping spheres can only be 
carried out up to φ ≈ .74, which corresponds to the close packing of uniform spherical 
pores. 

The CPA, which in principle treats both matrix and pores symmetrically, was 
shown by Berge et al. (1993) to be more descriptive of spherical exclusions than of 
spherical inclusions, and this is consistent with the results shown here.  The 
agreement of the CPA is not as good with the present simulation though as with 
experimental results on fused glass beads.  This is probably due to differences in pore 
shape, since the fused glass beads are non-overlapping.  Indeed, at any fixed porosity, 
one can see a decrease in moduli attending a progression in pore shape.  Non-
overlapping spherical pores are the stiffest pores and have the highest moduli.  
Allowing spherical pores to overlap creates some non-spherical but still relatively 
rounded pores.  The pores of non-overlapping spherical exclusion (not simulated 
here, but typified by fused glass beads) have more crack-like regions in each pore, 
and would have lower moduli yet (conceivably near the line representing the CPA 
theory).  Finally, overlapping exclusions could readily create some very narrow, slit-
like pores, which give rise to the smallest moduli.  We will simulate non-overlapping 
exclusions in the future to verify this picture and compare with fused glass bead 
results. 

CONCLUSIONS 
Three-dimensional simulations are shown to be useful in assessing various 

theoretical approaches.  While none of the considered methods are yet fully 
satisfactory, Norris� DEM is shown to be quite accurate for several properties of 
porous media with overlapping pores, and the theory of Kuster and Toksöz is 
reasonably accurate for non-overlapping pores. 
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