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A colour version of this paper is available on the CREWES 2001 Research Report CD. 

SUMMARY 
Bayes’ theorem is used to derive a three-parameter non-linear AVO inversion. 

Geologic constraints based on available well-control or rock-physical relationships 
are incorporated to help stabilize the solution. Parameter uncertainty estimates arise 
naturally as part of the derivation and provide estimates of the reliability of the 
different parameters. The resulting parameter and uncertainty estimates may be 
transformed to a variety of elastic and rock-physical AVO attributes popular in the 
literature using a transform matrix. 

INTRODUCTION 
The elastic parameters may be estimated, using a linearized approximation of the 

Zoeppritz equation such as Aki and Richards (1980), 
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where r is the angle dependent reflectivity. The parameters α, β, ρ, γ respectively are 
the average p-wave velocity, s-wave velocity, density and the ratio of S-velocity to P-
velocity across the interface. The variable θ is the average angle-of-incidence and ∆α, 
∆β, ∆ρ are the change in p-wave velocity, s-wave velocity, and density. Equation (1) 
may be written in matrix form Gm=d where G is the linear operator, m, the unknown 
parameter vector containing the velocity and density reflectivity 

T]/,/,/[ ρρββαα ∆∆∆  and d the input data vector (offset-dependent reflectivity). 

In practice, equation (1) is rarely inverted. For conventional acquisition geometries 
and noise levels, equation (1) is ill-conditioned. That is, a small amount of noise will 
result in large parameter deviations. This problem becomes worse as the range of 
angles used in the inversion becomes smaller. Various authors (Shuey (1985), Smith 
and Gidlow (1987), and Fatti et al (1994), among others) rearrange equation (1) to 
solve for other parameterizations. In implementing these schemes, hard constraints 
are usually implemented either explicitly or implicitly to improve the stability of the 
problem. Smith and Gidlow (1987) use the Gardner equation (Gardner et al., 1973) to 
remove the density reflectivity, thus improving the stability of the problem. The 
Shuey and Fatti equations are generally both solved using only the first two terms, 
implicitly constraining the third term’s reflectivity to zero. 

Rather than using hard constraints, this paper uses soft constraints from the well 
control or from rock-physical relationships. The degree to which the constraint 
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influences the solution is dependent on the signal-to-noise level of the data and the 
acquisition geometry. In the case of good signal-to-noise data and a large angle range, 
the constraints only influence the solution in a minor way. Under these conditions, the 
density reflectivity might be reliably solved for. For poor signal-to-noise-ratio data or 
a data with limited angle range, the constraints will dominate the solution. Parameter 
estimates will have greater uncertainty and quality control displays must be relied 
upon to determine if the estimate is useable (Downton et al, 2000) 

Bayes’ theorem provides a convenient theoretical framework to do this. This paper 
first reviews Bayes’ theorem, the Likelihood function, and the prior constraints. It is 
shown how well control or rock physical relationships can be used to construct a prior 
probability function. Then, by combining the Likelihood function and the a priori 
probability function, a non-linear inversion algorithm is derived. Next, the reliability 
of the estimates is discussed. It is shown that the parameter estimate and uncertainty 
can be transformed to other AVO attributes that might be more suitable to interpret 
the data. Lastly, the algorithm is demonstrated on both synthetic and real seismic 
data. 

THEORY 

Bayesian Inversion 
Bayes’ theorem provides a theoretical framework to make probabilistic estimates 

of the unknown parameters m from uncertain data and a priori information. The 
resulting probabilistic parameter estimates are called the Posterior Probability 
Distribution function (PDF). The PDF written as P(m|d,I) symbolically indicates the 
probability of the parameter vector, m, given the data vector d, (offset-dependent 
reflectivity) and information, I. Bayes’ theorem  
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calculates the PDF from the likelihood function P(d|m,I) and a priori probability 
function P(m|I). The denominator P(d|I) is a normalization function which may be 
ignored if only the shape of the PDF is of interest. 
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The most likely estimate occurs at the maximum of the PDF. The uncertainty of the 
parameter estimate is proportional to the width of the PDF. 

Likelihood function 
If we assume uniform uncorrelated Gaussian noise then the likelihood function 

may be written as (Sivia, 1996) 
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where σ2 is the variance of the noise. In the case of uniform priors, Bayesian 
inversion is equivalent to maximum likelihood inversion. 

For AVO inversion, because of the small number of parameters solved for, it is 
possible to visualize the PDF. If the parameter vector m had only one element, the 
PDF would be a Gaussian function. If the parameter vector m had two elements, the 
PDF would be a bivariate Gaussian function and an equiprobable solution would be 
an ellipse. For the case of AVO inversion, where there are 3 parameters, the PDF is a 
multivariate Gaussian function where an equiprobable solution is an ellipsoid. 
Typically the ellipsoid is quite elongated along the density reflectivity axis. The 
solutions are non-physical when the reflectivity is greater than 1. 

A priori constraints 
One way to reduce the uncertainty is to impose constraints on the solution. For 

example, non-physical solutions can be excluded from the solution space. This can be 
written in terms of a probability distribution where physical solutions are 
equiprobable and non-physical solutions given zero probability. 

It is not necessarily desirable to assign uniform probabilities over the range of 
physically valid reflectivity. The stratigraphic sequence is a result of cyclic geologic 
processes that result in reflectivity probability functions, which may be reasonably 
described by common probability functions. The normal distribution was found to 
reasonably describe the statistics of logs for this work in Western Canada. Other 
probability functions may be used if appropriate, but for this paper the normal 
probability function is used. The joint probability distribution for the P-velocity, S-
velocity and density reflectivity is the multi-variate Gaussian distribution that is 
parameterized by a covariance matrix. The diagonal elements of the covariance 
matrix are the variances of the P-velocity, S-velocity and density reflectivity. The off-
diagonal elements describe how correlated the P-velocity, S-velocity and density 
reflectivity are. 

From rock physics studies it has been empirically observed that the P-velocity, S-
velocity and density are correlated. The mudrock relationship (Castagna et al, 1985) 
provides a relationship linking P-velocity and S-velocity reflectivity, RVs=mRVp. The 
Gardner relationship (Gardner et al, 1973) provides a relationship between the P-
velocity and density reflectivity, Rd=gRVp. Potter et al. (1998) observed a similar 
relationship between S-velocity and density reflectivity, Rd=fRVs. These parameters 
and their correlation coefficients r1, r2 and r3 can be calculated from the local well 
control. From this the parameter covariance matrix Cm, which defines the multi-
variate Gaussian distribution can be constructed. 
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In practice, it is more efficient to calculate this directly from the sample statistics, 
but the proceeding analysis provides physical significance to each of the terms in the 
parameter covariance matrix. In addition, in areas with limited well-control or 
missing information, published values may be used to help construct the covariance 
matrix. 

The resulting a priori probability function is the multi-variate Gaussian probability 
function 
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where η is a global scale factor to account for the arbitrary scaling of the seismic 
data. 

Nonlinear inversion 

The Likelihood function (equation 4) may be combined with the a priori probability 
function (equation 6) using Bayes’ Theorem (equation 3). Since there is no explicit 
interest in the variance σ or the scalar η,  both are marginalized (Sivia, 1996). The 
most likely solution can then be found by finding where the probability function is 
stationary. This involves taking the partial derivatives with respect to each parameter, 
setting the result to zero and solving the set of simultaneous equations. This results in 
the nonlinear equation 
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where εεεε=Gm-d and mCm 1−= m
TQ . The equation is weakly nonlinear and can be 

solved in an iterative fashion using Newton-Raphson. The term εεεεTεεεε is an estimate of 
the RMS energy of the noise and Q the RMS energy of the signal. The ratio is 
therefore an estimate of the N/S ratio. The ratio acts as a weighting factor determining 
how much the prior constraints influence the solution. If the S/N is large, then the 
weighting factor is small and the constraints add little to the solution and vice versa. 

Uncertainty analysis 
The uncertainty of the parameter estimate is related to the width of the distribution. 

This can be calculated from the 2nd derivative evaluated at the parameter estimate. 
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With the assumption of uniform uncorrelated Gaussian noise the uncertainty is 
described by the covariance matrix 
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The diagonal of the covariance matrix represents the variance of each parameter 
estimate. The off-diagonal element represents the degree of correlation between the 
errors (Downton et al., 2000). 

It is also important to understand how much the constraints are influencing the 
solution. The uncertainty can also be calculated if the constraints were not included. 
The ratio of these two uncertainty estimates give a sense of how much of the solution 
is coming from the data and how much from prior knowledge. To make accurate 
predictions about the subsurface the parameter estimate of interest should be largely 
coming from the data. 

Transform matrix 
In this paper the P-velocity, S-velocity, and density reflectivity are estimated. In 

the literature, equation (1) has be rearranged to solve for impedance reflectivity (Fatti 
et al, 1994), Lame reflectivity (Gray et al, 1999), geometric parameters A,B,C 
(Shuey, 1985), and many others. This being the case, it is simple to construct a 
transform matrix to transform from velocity reflectivity to any of these other 
attributes Tmm ='  where T is the transform matrix and 'm  is the new parameter set. 
The parameter uncertainty covariance matrix can also be transformed by 

T
mm TTCC =' . In this way different AVO attributes can be examined to see how they 

show off some particular geologic feature or anomaly. An attribute can be selected 
which highlights the objective the best. Of equal importance, the reliability of each of 
these attributes can also be examined to understand whether the anomaly is reliable or 
an artifact due to the noise. 

EXAMPLES 

Synthetic example 
The method has been tested on both synthetic and real data. The synthetic data was 

generated based on two wells from Western Canada. Synthetic gathers were 
generated with a variety of different acquisition geometries to understand how the 
inversion would react to changes in fold, angle range, and signal-to-noise. The 
constraints were constructed based on a composite of logs in each area. The results of 
the constrained inversion were transformed to impedance reflectivity and compared to 
the corresponding zero-offset reflectivity attributes. 

In order to get a reliable estimate of the density reflectivity, we need to have 
seismic data with good signal-to-noise and large incidence angle range. Figure 1 
shows the AVO inversion for the angle range of 0 to 45 degrees, for a synthetic 
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gather with a signal-to-noise ratio of 8. With this large angle range and good S/N 
ratio, reliable estimates of the density reflectivity are possible. Note that in this 
example the density and velocity are uncorrelated. Figure 2 shows the results of the 
AVO inversion, but on a gather with a signal-to-noise ratio of ¼. In this case, the 
estimate of the density reflectivity does not correlate well with the actual reflectivity. 
The estimate is coming primarily from the constraints. 

Data Example  
 The inversion so far has been run on seven different seismic lines. Only one line 

had sufficient angle range and signal-to-noise ratio to give a geologically significant 
density reflectivity estimate (Figure 3). The zone of interest is the bright spot around 
0.72 seconds. Well A is a non-economic gas well which encountered low gas 
saturations, whereas wells C and E encountered economic gas. The porosity and 
thickness of the sands in all the wells are equivalent. The P-impedance and fluid stack 
(not shown) give the same response for all the wells. Note that the density section 
gives a brighter response for the economic gas as expected. 

Figure 4 shows the standard deviation and the influence of the constraints on the 
density reflectivity estimated. Around CDP 2000 the seismic line went through 
muskeg, resulting in poorer quality records. The standard deviation is much larger in 
this area. Because of the poorer S/N ratio, the constraints are weighted more in the 
solution. This influence shows in the ratio of constrained to unconstrained uncertainty 
(Figure 4, bottom panel). However, for most of the zone of interest, the solution is 
largely coming from the data. This, combined with the good geologic correlation with 
the well control, suggests the density section is reasonable. 

CONCLUSIONS 
We have demonstrated a three-parameter AVO inversion using soft constraints. 

The degree to which the constraints influence the solution is a function of the signal-
to-noise ratio of the data. The constraints preferably should be calculated from local 
well control. If local well control is not available, values from the literature may be 
used. Velocity and density reflectivity are solved for, but can be transformed 
subsequently to virtually any other AVO attribute. Parameter uncertainty estimates 
are provided as part of the derivation and should be examined to determine the 
significance and reliability of a particular AVO attribute. This is particularly true of 
the density reflectivity. Density reflectivity may be reliably estimated for data with 
little noise and large angle range. 

The results of the three-term constrained AVO inversion are equivalent to the Smith 
and Gidlow AVO inversion if the a priori constraints define the density reflectivity as 
a linear function of the P-velocity reflectivity. Similarly, the results of the inversion 
are equivalent to the two-term Fatti equation (Fatti et al, 1994), if the a priori 
information specifies the density reflectivity is zero. Lastly the three-term AVO 
inversion is equivalent to the two-term Shuey equation with the a priori constraint 
that the velocity reflectivity is zero. By choosing constraints based on local well 
control, honouring known rock physical relationships, and weighting the constraints 
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based on the needs of the data, the results of the constrained 3 parameter AVO 
inversion should be more accurate than the aforementioned methods.  
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FIG 1. Results of AVO inversion from 0 to 45 degrees for P-impedance, S-impedance and 
density reflectivity attributes on a gather with a S/N=8.  The estimate is in red and the actual 
reflectivity in blue. The estimated standard deviation of the P-impedance reflectivity is 
labelled dRip, S-impedance reflectivity is labelled dRis and density reflectivity is labelled dRd 
and stddata is the standard deviation of the prestack data. 

 

Fig. 2. Results of AVO inversion from 0 to 45 degrees for P-impedance, S-impedance and 
density reflectivity attributes on a gather with a S/N=1/4. The estimate is in red and the actual 
reflectivity in blue. The estimated standard deviation of the P-impedance reflectivity is 
labelled dRip, S-impedance reflectivity is labelled dRis and density reflectivity is labelled dRd 
and stddata is the standard deviation of the prestack data. 
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FIG. 3. P-impedance, S-impedance, and density reflectivity attribute inversions over 
producing and non-economic gas fields. Note that it is possible to differentiate on the density 
section the low gas saturation gas well (Well A) from the economic gas wells (Well C and E). 

 

FIG. 4. The density reflectivity and related quality control sections. The standard deviation of 
the density (middle panel) is considerably smaller than the density reflectivity at the zone of 
interest.  The ratio of the unconstrained to constrained uncertainty (bottom panel) shows the 
influence of the constraints on the solution. Where this ratio is high, the constraints are 
dominating the solution. This occurs when the S/N is poor or the range of angles available for 
the inversion is limited. 


