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isotropic (VTI) media 
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ABSTRACT 
The important aspect of converted-wave (P-S) seismology is that the exact location of 
P-S conversion point at the reflector is not well known. For a single horizontal layer, 
the position of the conversion point can be calculated exactly from an analytic 
expression. In multi-layered strata, the conversion point is not at a constant offset 
from the source, but traces a trajectory that moves towards the receiver as the depth 
decreases. The earth is known to be anisotropic, although basic seismic survey 
planning and data-processing are based on the isotropic assumption. The most 
common anisotropic case is Vertical Transversely Isotropic (VTI) media. In VTI 
media, there can be a large difference between the true coordinate of the conversion 
point and the one obtained from the isotropic single-layered model. This horizontal 
displacement of the conversion point in VTI media from that in the isotropic case is 
dependent on the offset-to-depth ratio, velocity ratio, and anisotropic parameters ε 
and δ defined by Thomsen. The relationship linking the displacement and the 
anisotropic parameters, and offset-to-depth ratio, can be complicated. An algorithm to 
calculate this relationship is developed using Thomsen�s anisotropy equations, both 
the linear approximation and the exact forms. A VTI model is designed using 
NORSAR2D software and the common-shot raytracing is performed to obtain the 
conversion-point coordinate. The displacement of the conversion point increases with 
the increasing offset to depth ratio and the anisotropy parameter ε. The value of δ can 
also have large influence on the displacement of the conversion point. We conclude 
that when the anisotropic parameter ε is smaller than δ, the conversion point is 
displaced towards the receiver relative to its location in an isotropic medium. When ε 
is larger than δ, the conversion point moves towards the source compared to that in 
the isotropic medium. There is no large difference between the results from 
Thomsen�s linear equations and the results from exact equations at small offset-to-
depth ratios. 

INTRODUCTION 
Converted waves have been more and more widely used in seismic exploration, for 
they can provide high-quality images where conventional images are poor (Stewart et 
al., 1999). Figure 1 shows the geometry of the converted wave in a thick, uniform 
isotropic layer. 

A ray emitted as a P-wave at angle θP from the source reflects from the bottom of 
the layer as an S-wave at an angle θS and is received at the receiver at a certain offset. 
These two angles are related by Snell�s law: 
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FIG. 1. The geometry of the converted wave obeying Snell’s law. 
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Here p  is the ray parameter, and pv  is the P- wave velocity and sv  is the S-wave 
velocity. 

The distance of the conversion point from the source is dependent on the depth of the 
reflector and the SP vv in the overburden. Tessmer and Behle (1988) gave a formula 
to calculate approximately the coordinate of the conversion point in an homogeneous 
and isotropic layer, which for a small incident angle is: 
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Because the P-S velocity ratio SP vv is always larger than 1, the conversion point is 
closer to the receiver than the midpoint. The S-wave leg comes up more steeply than 
the P-wave leg goes down. They concluded that for deeper reflection zones the 
approximation errors are small. 

Tessmer and Behle (1988) showed that in multi-layered strata, the conversion point is 
not a constant offset from the source, but traces a trajectory that moves towards the 
receiver as the depth decreases (Figure 2). The asymptote of this trajectory is defined 
by equation (2). A multi-layered model can be considered as a simple case of VTI 
medium. 
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FIG. 2. The conversion point traces a trajectory in the multi-layered model for a certain offset, 
instead of locating on a vertical axis (Stewart et al., 1999). 

It�s well known that the earth�s crust is inhomogeneous and anisotropic. But 
almost all of the seismic surveys and processing have not taken anisotropy into 
consideration. This isotropy assumption could lead to large errors in NMO correction, 
stacking and migration, which have been shown by many authors (e.g. Alkhalifah and 
Larner, 1994). The most commonly considered anisotropic medium is the Vertical 
Transversely Isotropic (VTI) case. Thomsen (1986) showed that the energy does not 
travel along the direction that the ray path travels in the anisotropic case because the 
wavefront is not spherical (Figure 3). 

 

FIG. 3. Graph of the definitions of phase (wavefront) angle,θ , and group (ray) angle,φ  
(Thomsen, 1986). 

The wavefront-normal angle is called the ray angle, which is represented as θ  while 
the angle from the source point to the wavefront is called the phase angle, which is 
represented by φ . The phase velocity (velocity perpendicular to the wavefront) is 
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different from the group velocity. Thomsen (1986) showed the difference between the 
ray angle and the phase angle in an anisotropic case in Figure 3. He defined three 
parameters ε, δ and γ to describe these different varieties of anisotropy. He also 
deduced the velocity equations, which are functions of the phase angle and the 
anisotropic parameters, and the relationship between the phase angle and the group 
angle. 

Anisotropy has less influence on P-waves than on S-(converted) waves. When the 
formation is shown to be VTI, the location of the conversion point will depart 
horizontally from that in an isotropic case, and it cannot be approximated by the 
isotropic case. Otherwise, it will lead to great problems in NMO correction and 
stacking which could cause traces that do not contain reflector energy to be summed, 
and those that do contain reflector energy not to be summed (Tessmer et al., 1990). 
Lawton and Cary (2000) proved that the location of the conversion point is critical to 
the P-S seismic survey design. Therefore, the horizontal position of the conversion 
point on the reflector has to be calculated specifically. In this paper we concentrate on 
the calculation of the displacement of the conversion point in the VTI model.  

THEORY 
Starting from the linear stress-strain equations, Thomsen (1986) gave his definition of 
the anisotropy parameters connected with the velocities rather than the elastic 
components. He used ε to describe the fractional difference between vertical and 
horizontal P velocities, which is given by  
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The parameter δ, is defined to describe the near-vertical P-wave propagation by  
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And also γ, which corresponds to the conventional meaning of �SH anisotropy� is expressed 
by 
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He obtained the equations of phase velocity in transversely isotropic media: 
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where 00 , βα is the P-wave phase velocity and S-wave velocity in the vertical axis, 
respectively. And they are defined by 
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Here, k is bulk modulus and µ  is the shear modulus and ρ is density. 

The ray angle, φ , can be expressed as a function of phase angle,θ , given by the 
following equation: 
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Group velocity at angle φ, )(φV , is related to phase velocities at angle θ by: 
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Using the Taylor-series expansion for small ε, *δ and γ, Thomsen derived the linear 
approximation for weak anisotropy: 
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So substituting the equation (14) into the equations (6), (7) and (8), respectively, he 
obtained the following linear approximation of the velocities: 
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Thomsen (1986) then replaced the *δ  with another parameter, δ, using the 
relationship:  
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The relationship between the group angle, φ, and phase angle,θ, in the linear 
approximation form, is: 
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For P waves, substituting equation (15) into equation (12) leads to 

 ( )[ ]ppp θδεδθφ 2sin421tantan −++=   (20)  

Similarly, for SV-wave and SH-wave,  
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These equations are the theoretical bases for the calculation of the horizontal 
coordinate of the conversion point for given offset/depth ratio, and anisotropy 
parameters. 

NUMERICAL MODELLING METHODOLOGY AND RESULTS 
Mapping conversion point using Thomsen’s equation  
Using Thomsen�s linear-approximation equations (equations (16)-(21)), we develop 
an algorithm to calculate the horizontal distance between the theoretical conversion 
points in a VTI medium and in an isotropic medium for the same offset. We follow 
the same procedure using the same equations (equations (6), (7), (8), and 12), as 
described in the following paragraphs. Figure 4 shows the flow of this algorithm 
developed to calculate the displacement of the conversion point. 
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FIG. 4. Chart showing the angles and offsets included in the algorithm. 

The basic method computes P-wave phase angles θP (such as from 0 to 60 degrees, 
with a step of 0.25 degrees), then the corresponding P-wave phase velocity at each 
angle, ( )θpv , is calculated by using equation (6), and then the P-wave ray parameter, 

pp , for each angle by using equation (1). 

A series of SV-wave phase velocity, ( )θsv , are calculated using equation (7) for a 
number of SV wave reflection angle (such as from 0 to 60 degrees, with interval of 
0.25 degree), then the SV-wave ray parameter sp .  

For each P-wave ray parameter, the SV-wave ray parameter that is equal or the 
closest to it is found and the corresponding values of the SV-phase angle stored.  

For each P-wave phase angle, and for given values of ε  and δ , the group angle, 
φP, is first calculated using Thomsen�s exact equation (12). The horizontal coordinate 
of the conversion point 1pX  is calculated by using the group angle and the thickness 
of the VTI medium in the formula pp zX φtan*1 = . 

For each S-wave phase angle that has been stored, which corresponds to each P-
wave phase angle by Snell�s law, its group angle Sφ  is calculated by using equation 
(12). Then the distance from the conversion point to the receiver 1sX , shown in 
Figure 4, is calculated from svs zX φtan*1 = , which is the distance between the 
conversion point and the receiver. 
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A series of offsets X  for each phase angle Pθ  can be obtained by adding these two 
distances together: the distance from the conversion point to the source 1PX , and the 
distance from the conversion point to the receiver 1sX .  Also the corresponding 
offset-to-depth ratio can be obtained. 

Then given the offset X  in a VTI medium, the conversion-point offset for this 
shot�receiver offset, 0pX , can be determined using the same P-wave velocity and S-
wave velocity by Snell�s law for different angles. The distance between the two 
conversion points ( 0pX - 1PX ), which is the displacement of the conversion point in 
VTI media from that in isotropic case for same offset, is then obtained. 

The linear approximation forms of ray angle (equations (20), (21), and (22)) and 
phase velocities (equations (15), (16) and (17)), can also be applied replacing the 
exact equations. 

For the model with ε = 0.10, and δ = 0.05, the displacement of the conversion 
point, relative to the isotropic case is calculated using Thomsen�s exact equations for 
phase velocities and ray angles and linear-approximation equations, respectively. The 
same procedures are conducted for δ = 0.10 and δ = 0.2. Figure 5.1 and Figure 5.2 
display the variation of the displacement with the variation of the offset to depth ratio. 
From these two figures we can see there is no significant difference between these 
two methods. 

A series of 3-D curved surfaces are also plotted to display the variation of the 
displacement of the conversion point and the offset-to-depth ratio, and the anisotropy 
parameter ε (Figure 6.1-6.6), which are obtained from the exact equation of energy 
velocities and ray angles (equations (6), (7), (8) and (12)). 
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FIG. 5.1 Variation of the displacement of the conversion point with the variation of the offset 
to depth ratio, computed from Thomsen’s linear approximation of phase velocities equation 
(equations (15), (16) and ( 17)) and ray angle (equations (20), (21) and (22)) for different 
value of delta. In this figure, the ‘+’ sign represents the conversion point moves towards 
receiver, while ‘-‘ represents the conversion point moves towards to the source, relative to 
that in isotropic case. 
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FIG. 5.2 Variation of the displacement of the conversion point with the variation of the offset 
to depth ratio, computed from Thomsen’s exact equations for phase velocities equation 
(equations (6),(7) and (8) ), and ray angle(equation (12)). 
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FIG. 6.1 3-D surface showing the variation of the displacement-to-depth ratio of the 
conversion point in VTI media relative to its location in the isotropic case, with the variation of 
the offset-to-depth ratio and ε. Here, δ = 0.25 ε. 
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FIG. 6.2 3-D surface showing the variation of the displacement-to-depth ratio of the 
conversion point in VTI media relative to its location in the isotropic case, with the variation of 
the offset-to-depth ratio and ε. Here, δ = 0.50 ε. 
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FIG. 6.3 3-D surface showing the variation of the displacement-to-depth ratio of the 
conversion point in VTI media relative to its location in the isotropic case, with the variation of 
the offset-to-depth ratio and ε. Here, δ = 0.75 ε. 
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FIG. 6.4 3-D surface showing the variation of the displacement-to-depth ratio of the 
conversion point in VTI media relative to its location in the isotropic case, with the variation of 
the offset-to-depth ratio and ε. Here, δ = 1.0 ε. 
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FIG. 6.5 3-D surface showing the variation of the displacement-to-depth ratio of the 
conversion point in VTI media relative to its location in the isotropic case, with the variation of 
the offset-to-depth ratio and ε. Here, δ = 1.25 ε. 
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FIG. 6.6 3-D surface showing the variation of the displacement-to-depth ratio of the 
conversion point in VTI media relative to its location in the isotropic case, with the variation of 
the offset-to-depth ratio and ε. Here, δ = 1.5 ε. 
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NORSAR 2D anisotropy ray mapping  
A VTI model (Figure 7) is designed and anisotropic ray-mapping is conducted by 
using the NORSAR2D package to get the displacement of conversion point. 

 

FIG. 7. The geometry and physical properties of the VTI model designed for NORSAR2D. 

 

The physical parameters ( ),,,,, 00 γδερβα and the size of the model we designed 
are kept constant as they were defined in our algorithm. A special point (x = 2.0 km, 
z = 1.036 km), which is marked with a star, is used to detect the trace number 
conveniently. 

The common-shot survey, with P-wave vertical source and horizontal S-wave 
receiver, is conducted in the raytracing on this model. 

The synthetic seismograms are generated by the NORSAR2D and displayed by 
PROMAX. In every case the event is broken at the special point (conversion point) 
on the synthetic seismogram. Displaying this seismogram on PROMAX, we know the 
trace number, so we can determine the offset. An example of the synthetic 
seismogram is shown in Figure 8. 

Isotropic, ,60000 sm=α

sm /30000 =β , 30.2 cmg=ρ  

VTI
sm /30000 =α   

sm /15000 =β  
3/0.2 cmgñ =  

with  ε and δ 
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FIG. 8. An example of P-S wave synthetic seismogram, is generated from NORSAR2D and 
displayed in PROMAX. 

The horizontal coordinate of the conversion point 1pX  for a certain offset-to-depth 
ratio is obtained from the display of the synthetic seismogram. The offset of 
conversion point in the isotropic case, poX , is also obtained by performing the 
common-shot raytracing.  The displacement of the conversion point can be obtained 
by calculating 1pX - poX . 

The results obtained by using NORSAR2D are shown in Table 1 and Table 2, for 
ε = 0.10 and ε = 0.20, respectively. For comparison with the results from our 
algorithm, the corresponding displacement obtained from the Thomsen�s exact 
equations and linear approximations are also listed together. 

Table 1. Comparison of the conversion point’s displacement in the VTI model relative to its 
location in the isotropic case, obtained from NORSAR2D raytracing with that calculated using 
Thomsen’s linear approximations and exact equations. The offset-to-depth ratio is 1.34 and 
ε = 0.10. The ‘+’ sign means the conversion point moves towards the receiver, and ‘-‘ towards 
the shot. 

For 
ε = 0.10 

Displacement from 
NORSAR2D (m) 

Displacement from 
linear equations (m) 

Displacement from 
exact equations (m) 

δ = 0.20 236.1 244.18 316.42 
δ = 0.15 142.3 139.16 163.58 
δ = 0.10 47 41.56 49.53 
δ = 0.05 -50 -56.50 -49.39 
δ = 0.00 -146 -151.26 -140.15 
δ = -0.05 -244 -237 -218.68 
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Table 2. Comparison of the conversion-point’s displacement in the VTI model relative to its 
location in the isotropic case, obtained from NORSAR2D raytracing with that calculated using 
Thomsen’s linear approximations and exact equations. The offset-to-depth ratio is 1.34.and 
ε = 0.20. The ‘+’ sign means the conversion point moves towards the receiver, and ‘-‘ towards 
the shot. 

For 
ε = 0.20 

Displacement  from    
NORSAR2D (m) 

Displacement from 
linear equations (m) 

Displacement form 
exact equations (m) 

δ = 0.30 255 267.69 383.69 
δ = 0.20 82 73.70 83.43 
δ = 0.15 -4 -18.49 -13.73 
δ = 0.10 -171 -103.70 -100.17 
δ = 0.05 -180 -189.26 -177.24 

 

From Table 1 and Table 2, we can see that the results from different methods show 
the same variation trend. The conversion point in VTI media moves towards the 
receiver when δε ≤  and towards the shot while δε > . The displacements from the 
NORSAR2D experiments are much closer to the results from Thomsen�s linear 
equations than to the results from the exact equations. 

The raypath of the P-S wave in the VTI model with ε = 0.10, δ = -0.05 and 
δ = 0.20, respectively, and the raypath in isotropic case, are also plotted to show the 
displacement of the conversion point (Figure 10). In this case, the distance of these 
two conversion points in the VTI model with different values of δ can be as large as 
480, which may due to the influence of the value of δ. 

   

FIG. 9. The displacement of the conversion point in VTI model with ε = 0.10, δ = -0.05 and 
δ = 0.20, respectively. 
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DISCUSSION AND CONCLUSION 
Results from the analysis show that the conversion point in the anisotropic case is 
very different from that in the isotropic case. The horizontal displacement of the 
conversion point in VTI media from that in isotropic media is dependent on the 
velocity ratio, offset-to-depth ratio, and anisotropy parameters (Figures 6.1-6.6). It 
increases with the increasing offset-to-depth ratio and anisotropic parameter ε 
(Figures 6.1-6.6). 

When ε is larger than δ, for the same offset, the conversion point moves towards 
the source in VTI media relative to that in the isotropic case (Figures 6.1-6.3, and 
Figures 5.1-5.2). When ε is smaller than or equal to δ for same offset, the conversion 
point moves towards the receiver (Figures 6.4-6.6, and Figures 5.1-5.2). Before this 
experiment was conducted, it had been assumed generally that the conversion point 
moves towards the source with increasing anisotropy. 

It has been proven that in most sedimentary formations, the value of ε is larger 
than the value of δ (Thomsen, 1986). So, the conversion point moves towards the 
source in most cases of VTI media. The displacement of the conversion point cannot 
be ignored in formations with transversely isotropic characteristics, which would 
cause a large error if anisotropy is not taken into account (Figures 6.1-6.6). When the 
formation is shown to be anisotropic, the conversion point can�t be approximated by 
the position found in the isotropic case.  

There is no significant difference between the results obtained from Thomsen�s 
exact equations for anisotropic velocities and ray-angle calculations (equations (6), 
(7), (8), and (12)), and the results from the linear-approximation equations (equations 
(15), (16), (17), and (20), (21), (22)), for small offset-to-depth ratios, but there is a 
large difference for offset-to-depth ratios greater than 1.5. (Figure 5.1 and Figure 5.2) 

The result from the NORSAR2D software is close to our results obtained from 
Thomsen�s linear equations for weak anisotropy (Table 1 and Table 2). It has been 
shown that the value of δ can also have a significant influence on the location of the 
conversion point.  

All our calculations are based on the assumption that the accuracy of measurement 
of the anisotropy parameters can be guaranteed. 
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