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Bayesian reservoir characterization 

Luiz Lucchesi Loures  

ABSTRACT 
This research aims to provide a complete solution for reservoir properties 

determination, including estimation and uncertainty analysis. The strengths of this 
reservoir characterization methodology is:  

i) uncertainty analysis and  

ii) integration of multiple geophysical data-sets, rock physics analysis and prior 
information in a straightforward way provided by the Bayesian framework.  

The inference problem reported on this paper is formulated to solve the problem of 
porosity estimation. The sources of information are pre-stack seismic data; well log data 
and core samples. The reservoir is considered a volume composed of cells. The final 
solution is a probability density function (pdf) for porosity for each cell of the reservoir 
volume. These pdfs, call posterior pdfs, represent deductions about porosity and 
incorporate all related uncertainties.   

The waveform elastic inversion is incorporated in this methodology to access the 
porous medium physical property information from pre-stack seismic data. Geostatistical 
modelling is incorporated to access the porous medium spatial variability information 
from well-log data. 

The methodology is implemented to consider a reservoir composed for block cells. 
One posterior pdf is computed for each reservoir cell. Two cell volumes present the final 
result. One is constructed with the modes of the posterior pdfs related to each cell and 
represents the estimated porosity model, and the other is constructed with the confidence 
interval of the posteriors pdfs and represents a measure of the related uncertainties. 

INTRODUCTION 
Seismic attributes are the main source of information about the reservoir properties. In 

current reservoir characterization practices, seismic attributes are used together with well 
petrophysical measurements (from logs and core samples) to derive suitable calibrations 
of the rock physics and geostatistical models, which are key for reservoir quantification. 

Despite the important decisions that are made after the reservoir quantification, the 
current reservoir characterization practices often fail to account for the uncertainties 
associated with each piece of information used in this process. Some uncertainty 
examples are related to: disturbances in the seismic data; data processing and inversion 
performed to obtain seismic attributes, the discrete earth model and the rock physics 
models relating attributes to petrophysical properties.  

This work follows the Bayesian methodology of inference and provides a porosity 
estimated model and a related uncertainty analysis. The Bayesian methodology focuses 
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on obtaining a conditional probability density function (pdf) for the parameters under 
investigation, which is named the posterior pdf. This pdf comes from the normalized 
product of the prior pdf, constructed on the basis of information independent from the 
data, and the data pdf or likelihood function, which carries information from data fitting.  
In considering multiple datasets, we reinforce the idea the all data must be accounted for 
through a data fitting procedure. This yields a Bayesian formulation having multiple 
likelihood functions.  

One of the main difficulties in the Bayesian formulation is working with high 
dimensional distributions. To avoid this problem, we use simple statistical models (e.g., 
Gaussian distributions) and the local distribution. In the local approach, we seek to 
directly obtain a collection of marginal posterior pdfs for individual parameters; e.g., 
interval porosity, in a 1-D inversion, or cell porosity in 2-D or 3-D inversions. Then all 
inferences, such as estimates or uncertainty measures, are taken from the marginal 
posterior pdfs. 

This research report illustrates the principles of this formulation using the porosity 
inference example. The inference work is carried out on two levels, considering the 
different length scale of the datasets involved. On the first level there is the data obtained 
at well locations. Next, there is the inter-well space, where we must combine information 
propagated from the well location, surface seismic data, and rock physics analysis.  

First a porosity inference at the well location is conducted from well-log data, 
following the work reported on Loures (2002).  That work provides a posterior pdf of the 
interval porosity for each interval of a discrete well, which represents the beliefs about 
porosity given the knowledge of the well-log data. 

The next problem concerns the porosity inferences at inter-well locations. Basically, 
the goal is to compute a marginal posterior distribution for the average porosity in each 
cell of the discrete reservoir model.  In this case, we have divided the data information 
into two classes of data: one carrying information from the surface seismic data, which 
are the seismic attributes and another carrying information propagated from the well 
locations, which are the experimental variogram.  

The waveform seismic inversion is incorporated into this Bayesian formulation via an 
elastic Bayesian inference work from pre-stack seismic data. This step follows the work 
of Gouveia and Scales (1998). The result of this inference work is a joint normal 
posterior pdf for the elastic parameters of a 1-D layered medium. Next, the parameters of 
these posterior pdf (i.e. the maximum a posteriori and the covariance matrix) together 
with rock physics models and petrophysic observations are the base for the likelikood 
function for the seismic attributes that represents the beliefs about porosity after the 
knowledge of the pre-stack seismic data. 

Constructing a likelihood that carries information propagated from the well locations 
is a significant challenge. Defining the experimental variogram as the data to be inverted, 
and the variogram function as the mathematical expression relating this data to the cell 
porosity, solved it.  

Finally, the porosity posterior pdf for a cell is the product of these pdf classes of 
likelihood, for the associated cell, and the prior pdf. This posterior pdf represents the 
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beliefs about the cell porosity given the knowledge of the pre-stack seismic data, which 
carry the porous medium elastic information, and the knowledge of well-log data, which 
carry the porous medium spatial variability information. 

This report is going to describe the theoretical development, partial results of tests 
with pre-stack seismic data (1995 3-D Blackfoot data), practical implementation, a 
synthetic example and some discussion about the results and the further work. 

BAYESIAN FORMULATION 
Bayes Theorem 

Consider the reservoir model composed by a set of N block cells with average porosity 
φ ∈ RN. The problem consists of making inferences about median porosity for each cell: 
φi, i=1,�N, using a set of data d and prior information I, which is any additional 
information obtained independently from the data. Following the Bayesian approach of 
inference the solution is given by the posterior distribution p(φ | d ,I). This function is the 
result of the Bayes Theorem, which can be expressed as 

,
)I|(h

)I|(r)|(l)|(p
d

dd φφφ =
 (1) 

where )( I|r φ is the prior pdf, )( φ|l d  is the joint pdf for the data, also known as the 
likelihood function, and )( I|h d is a normalizing pdf that ensures the posterior 
distribution as a pdf. The posterior pdf should be expressed as the normalized product of 
prior distribution and likelihood function.  

In order to consider the posterior pdf as the solution of an inverse problem, the 
likelihood must be defined (i.e. the relation between the data d and the parameter φ exists 
and is known); and there are compatibilities between the prior understanding of the 
model and the final results, i.e. )( φ|l d >0 for some φ where )( I|r φ >0. Now it is 
necessary to define the likelihood function and the prior distribution to access the 
posterior distribution.  

Likelihood Function  

This work follows standard steps to construct the likelihood function, which is 
summarized by: 

       i) selecting the datasets which carry information about φ;  

       ii) finding mathematical expressions relating each type of porosity;  

iii) defining statistical models (pdfs) for data distributions, based on data 
uncertainty. 

Following these three steps, let us define the data set. This methodology defines two 
types of independent data set:  
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i) a dataset of p-wave and s-wave velocity seismic attributes, represented by s=[sp 

ss]T, s ∈ R2N associated with the cells of the reservoir model and  

ii) a dataset carrying information about the spatial variability of reservoir porosity, 
which is represented by v ∈ RL. 

Our choice is to make v a set of experimental porosity-porosity variogram values 
computed from subsurface porosity information, after integration of multiple well-log 
datasets by a 1-D well-log porosity Bayesian inference procedure (for details please refer 
to Loures, 2002). That 1-D Bayesian well-log inference methodology provides a porosity 
model for a set of depth intervals at well locations and the associated uncertainty. That 
inference work shows that the integration of different types of well-log data provides a 
considerable reduction of systematic and random error components, which may occur 
when deriving porosity estimates from a single type of well-log data. The source of 
uncertainty is specific of each type of log.  

Considering v and s as statistically independent datasets, the likelihood function 
should be expressed as the product of two independent distributions: 

 )(s)(v)s (v)d( φφφφ |l|l|l|l 21, == ; (2) 

Data v distribution: )(v φ|l1  

Assuming additive errors in the data v, it should be written as  

 ,)( 11 efv += φ  (3) 
where ei is a random variable representing a set of additive and independent errors. The 
error ei incorporates the uncertainties, which are associated with the porosity estimates in 
the well, the discrete earth model and the mathematical functions f1 that relates these data 
with porosity.  

The modelling operator f1 is the variogram function from geostatistics. This function 
involves pairs of well-log porosity values φ and the unknown cell porosity, which is 
given by 
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  (4) 

where ri and ri+h represent two different locations separated by a lag vector h with 
dimension h and NP is the number of pairs. 

Next step is to establish the criteria to select the probability density models for 
)(v φ|l1  data pdf. We chose to use the principle of maximum entropy to assign 

probabilities and assume that the first and second order moment information is sufficient 
to describe the errors. According to these choices, the )(v φ|l1  data pdf is normal and 
should be expressed as 
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and σ1
2 considered the unknown data error variance. This choice criterion to construct a 

likelihood pdf will be used as a standard criterion elsewhere in this work.  

Seismic data attributes distribution: )(s φ|l2  

Let sp and ss be a set of vectors representing p-wave and s-wave velocity seismic 
attributes respectively. These data vectors should be represented as the sum of a function 
of porosity, which are deterministic variables, and an error component, which is a 
probabilistic variable. 

 ,)(

,)(
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φ

 (6) 

The error ei, i=2,3 incorporate the uncertainties, which are associated with the process of 
data acquisition, data processing, the elastic inversion, the discrete earth model, and the 
mathematical functions fi , i=1,2 that relate these data with porosity. 

The next step is to define the relationships between data vectors and porosity, 
represented by the functions f1(φ) and f2(φ). The choice is the rock physics models 
studied by Han et al (1986). 

 ;)( γφφ 2222 cbaf ++=
 (7) 

 ;)( γφφ 3333 cbaf ++=
 (8) 

where γ is the unknown clay content and  ai, bi and ci for i=1,2 are the unknown 
regression coefficients. The set of equations (6), after the substituting equations (7) and 
(8), should be treated as multi-regression model with auto-correlated errors (Zelner and 
Tiao, 1964). In rock physics and elsewhere we encounter sets of regression equations and 
it is often the case that the disturbances are correlated. It is important that non-
independence of disturbances terms be taken into account in making inferences. If this is 
not done, inferences may be greatly affected. 

 The )(s φ|l2  pdf is defined as a normal distribution, as previously done for )(v φ|l1 , 
but two statements are considered to construct this pdf: 

i) These rock physics models do not consider explicitly some petrophysical 
properties that strongly affect the seismic velocities (for example fluid 
properties and effective pressure). The unknown regression coefficients 
incorporate the effect of these petrophysical properties. The likelihood pdf 

)(s φ|l2  must to incorporate the rock physics associated uncertainty. 

ii) The seismic elastic attributes come from a elastic inversion. A mutual 
correlation between the attributes exists, i.e. the random variables e1 and e2 are 
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not mutually independent. Its posterior covariance has a nonzero off-diagonal 
covariance matrix; 

To consider the first statement, this work uses a property of the Bayesian inference to 
predict a pdf for a new observation given an old observation. For the second statement 
this work uses a seismic elastic inference that provide an elastic model for layered 
medium and the associated covariance matrix. The next sections describe the theory of 
this Bayesian property applied to this current problem. 

The predictive pdf 

The predictive pdf for a vector of future observation s, which is assumed to be 
generated by the multiple regression process specified by the set of equations (6), is 
derived after the knowledge of an old set of observations s*, which is assumed to have the 
same statistical properties of s.  

For this present inference problem, consider a reservoir section composed by cells 
represented by the image in Figure 1. The vertical axis is the depth and the horizontal 
axis is the horizontal distance. The vertical lines represent well positions. Consider an 
available set of seismic attributes related to the reservoir cells.  

 

FIG 1: This image represents a reservoir section composed by block cells. The vertical axis is the 
depth and the horizontal axis is the horizontal distance. The vertical lines represent well positions. 

Let�s consider s* = [sp
* ss

*] the seismic attributes estimated for the cells at well 
locations. sp

* and sp
*  represent a vector of the p-wave and s-wave velocities respectively 

for the cells at the well locations. A multiple regression process with the set of equations 
(6) can generate the vector s*, where the regression coefficients are unknown variables 
and the petrophysical properties porosity φ and clay content γ, which represent the control 
variables, are known from well-log petrophysical observations. This set of equations can 
be represented in vector form as: 

 
** eXPs += ; (9) 

where X is a matrix composed by a unit vector column and with the petrophysical 
observations (from logs and core samples analysis) along the well; 
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P is a matrix with the unknown regression coefficients and e* is the 

disturbance term normal distributed, with mean zero and known covariance matrix.  

The posterior pdf for these unknown regression coefficients can be found applying the 
Bayesian theorem. Considering a non-informative prior distribution (for detail, please 
refer to Zellner, 1998) the posterior pdf for the regression coefficients should be 
represented by  

 
[ ] ;expp ***







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1T

2
1

 (10) 
where Cs*

  is the covariance matrix of the seismic attributes. 

Now, let�s consider the seismic attributes from a cell at inter-well space s = [sp ss], for 
example, the blue cell in the reservoir section of Figure 1. sp and ss are respectively the p-
wave and s-wave velocity seismic attributes obtained for this specific cell. At this 
position the petrophysical information about porosity and clay content are not available. 
Representing this multiple regression process by a vector equation results in 

 
epws += T

; (11) 

where wT = [1 φ γ], is a vector with the unknown petrophysical properties of the 
associated cell, e is disturbance term normal distributed and with median zero and the 
same statistical properties of e*.  

One way of deriving the predictive pdf is to write down the joint pdf l+(s,P |S*,X,w) 
and integrate with respect to P to obtain the marginal pdf for s, which is the predictive 
pdf. In the present problem this joint factors as follows: 

 
X)S|(Pw)P|(sw)XS|P(s ** ,,,,, pll *=+

. (12) 
Substituting Equation (10) with Equation (12) and developing l*(s|P,w) the following 

expression is found: 

 
[ ]
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T
d

T* 1T1T

2
1,,, expl

(13) 
This final joint pdf represents the data distribution for the seismic attributes of a 

specific cell at inter-well space and incorporates the rock physics knowledge from well 
petrophysic observations (core samples and logs). 

Prior distribution 

This work considers the definition of a non-data base prior distribution (NDBP) 
described by Jeffreys (1936) to access the prior distribution. A NDBP is derived from 
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theoretical knowledge of the physical medium and from the investigator�s background 
experiences. 

In this work the prior distribution must describe the prior knowledge of the unknown 
experimental variogram data variance and porosity. 

 This report follows the Bayesians� most conservative practice to define the prior pdf. 
It considers that with all previous pieces of information available, the only vertiable 
statement is that porosity should fall between 0 and 1 interval. The use of a boxcar 
function is consistent with expressing this prior information (for more details please refer 
to Zellner, 1996) 

The prior experimental variogram data-variance knowledge is that these scaling 
parameters may vary between 0 and ∞ . Following Jeffreys (1939) the use of an improper 
distribution is consistent to express complete unawareness of such parameters (i.e. any 
value between 0 and ∞  is equiprobable). Its logarithm pdf should be deemed as 
uniformly distributed and the use of a r(σl)∝1/σl function is considered a reasonable 
choice in describing this information. This pdf is invariant under power transformation. 
Then, prior distribution should be expressed as  

 
101

l
l ≤≤∝ φ

σ
σφ ,I|r ),(

. (14) 
Note that the prior pdf is improper, i.e. it is not normalized 

Posterior distribution 

With the Bayes Theorem applied, the posterior distribution should be 

 
),(w)XS|P(s)v()XSsv Pw( *2 I|rl,|l,,,|,,p *

l l211
2 ,,, σφσφσ ∝

. (15) 

The experimental variogram data variances 2
1σ  and the regression coefficients (on 

vector P ) are not the target of investigation. Petrophysical property inference and 
associated uncertainty is all that matters in this problem. These uninteresting parameters, 
which are referred to as nuisance parameters, are eliminated by integration of the joint 
posterior. This procedure, which is known in statistics as marginalization of the joint 
distribution, is applied and the marginal posterior pdf is obtained: 

 
P)XSsvPw()XSsvw( dd 22

l
*

l
* ,,,|,,p,,,|p σσ∫∫∝

. (16) 
This final pdf represents the data distribution for w of a cell at the inter-well space and 

incorporate the knowledge from petrophysical wells observations and from surface 
seismic data.  

All inference questions can be addressed to the posterior. For example, one can use the 
mean, median or mode as estimates for the interval porosity and the standard deviation or 
confidence intervals as measure of uncertainty. 
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A 1-D example of the application of this methodology from a cdp gather is presented 
at the next section.   

1-D EXAMPLE 
The seismic elastic inference: a full waveform inversion 

The first step in this methodology is a seismic elastic inference, which provides an 
elastic model of the medium and the associated covariance matrix. This work follows the 
methodology presented by Gouveia and Scales (1998), who developed a Bayesian 
formulation for the pre-stack seismic inverse problem, to estimate elastic velocities and 
density or elastic impedances. In their work, all uncertainties are described by normal 
distributions, but careful consideration is taken to construct the covariance matrices. 
These matrices are responsible for expressing all uncertainties in a normal pdf. 

This methodology considers a 1D reservoir with n-layers. The layers� thicknesses do 
not vary during the inversion process. Elastic velocities (P and S-wave velocities) and 
densities from layers of a target interval are inverted from a CDP gather.  

According to the Bayes� Theorem the general formulation of this seismic inverse 
problem, can be written as  

 
)|(ss)|(d)ds( IrlI,|p ∝

, (17) 

where )ds( I,|p  is the resulting posterior pdf for the seismic attributes and s)|(dl  and  
)|(s Ir  are, respectively, the likelihood and the prior pdf. s represents the elastic 

attributes and d the pre-stack seismic data. 

In defining the probability models, one problem arises due to the non-linearity of the 
forward seismic problem d=g(s), where the g is the seismic modelling operator defined 
by the elastic reflectivity method (Muller, 1985). Even when the prior pdf and likelihood 
are Gaussian, the posterior pdf )ds( |p cannot be obtained in closed form. Only in the 
case that the forward problem is linear, is )ds( |p  Gaussian.  

The standard solution is to first to obtain optimum estimates for the elastic properties 
s� , then a Gaussian approximation for )ds( |p is constructed on the basis of the 
linearization of the forward problem around point s� . This optimization process is 
designed on the basis of Equation (17) to yield the point of maximum probability density. 
When s)|(dl  and )|(s Ir  are both Gaussian, maximizing probability density is 
equivalent to minimizing the exponential argument of the Gaussian, leading to standard 
non-linear least square problem. Again, assuming diffuse or non-informative prior 
information, which makes 

 
s)|(d)ds( l|p ∝

, (18) 
and the argument of the exponential of the likelihood 
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 )]s(d[C)]s(d[)sarg( T gg 1
d −−= −

. (19) 
where Cd is the seismic data covariance matrix. 

The process of optimization by conjugate gradient used in Gouveia and Scales (1998), 
and adapted by the purpose of this work, can be summarized by the following expression: 

 
nn1n ηδ+=+ ss

, (20) 

where nδ is the direction of the nth iteration step and η  is the step length. The gradient of 
the function represented by Equation (19) is given by  

 
g(s))-(dG(s)CΘ 1

d
−=∇

, (21) 
where G(s) is the matrix of Frechét derivatives of the forward term g(s). After completing 
the optimization process, the resulting Gaussian approximation for the seismic attributes 
around s can be expressed by  

[ ] [ ] ,��|p






 −−∝ − ssCss

2
1-exp)ds( 1

s
T

 (22) 
where the covariance matrix is Cs=[GTCd

-1G]-1 which the Frechet derivatives evaluated at 
s� . 

A vertical component cdp gather from the 1995 Blackfoot dataset, adjacent to the well 
0808, was selected for this 1-D example. The Blackfoot area is located 15 km southeast 
of Strathmore, Alberta, Canada. The target rocks are incised valley-fill sediments, which 
consists of the lower Cretaceous sandstone of Glauconitic Formation at the Blackfoot 
Field. In the Blackfoot area the Glauconitic sands thickness varies from 0 to over 35 m. It 
is subdivided into three phases of valley incision that, however, cannot be found 
everywhere. The lower and upper members are made of quartz sandstone, 0.18 porosity 
average, while the middle member consists of low porosity tight lithic sandstone.  

A previous processing in this 3D dataset has the following steps: 

i) mute; 

ii) all static corrections; 

iii) surface consistent deconvolution; 

iv) true amplitude recovery; 

v) band-pass 

Figure 2 shows the selected cdp gather. The target interval is between 1.0 s and 1.1 s 
(1510-1710 m) and represents the Mannville Formation. This interval is discretized in 10 
m layers. The Figure 3 shows the elastic model obtained by the maximum a posteriori, 
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together with the well logs from the well 0808 and the initial model for the iteration 
process. The initial model is obtained from the sonics and density logs (from well 0808) 
after applied moving window of 200 m and blocked to 10 m. The final result shows a 
considerable improvement of the estimates regarding the initial model. The Glauconitic 
channels are present in the base of this interval, between 1.665 m and 1710 m. 

 Figure 4 is an image representing the covariance matrix, with colour scale where red 
is high value and green is low value. We can note the correlation between the elastic 
attributes in the off diagonal of the covariance matrix (the gradual variations of the off 
diagonal elements of this covariance matrix are not clear enough in a black and white 
hard copy). 

 

FIG 3: cdp gather close the well log 0808 at Blackfoot area, selected for a 1-D example. The 
target interval is between 1s and 1.1 s (1510-1710 m). 
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FIG 4: Elastic velocities and density obtained by the maximum a posteriori (black line curves or 
black continuous light in black and write copy), together with the well logs (sonics and density 
logs) from the well 0808 (blue line curves or light continuous line in black and write copy) and the 
first model for the iteration process (red line curves or dashed line in black and write copy). 

DENS ITY

DENSITY

DENS ITY

DENSITY

 

FIG 5: The posterior covariance matrix for the seismic attributes (elastic velocities and density), 
with a colour scale where red is high value and green is low value (the slowly variations of the off-
diagonal elements of this covariance matrix are not clear in black and white). 
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The petrophysical inference 

A 1D porosity inference is applied on the interval of the Glauconitic Sandstone 
reservoir channels in the well 0808 (between 1.665 m and 1710 m) using the Equation 
(16) and the results of the previous elastic inference. In this example the clay content is 
considered a known parameter (γ = γo). This information comes from gamma ray log. 
Then the posterior distribution for porosity, expressed by Equation (16), can be rewritten 
as )Xss( oγγφ =,,,|p * . 

    The well 1608, from Blackfoot area, is used to construct the matrix X and s* needed in 
the posterior pdf. Porosity estimates from core laboratory analysis and clay content 
estimates from gamma ray log are used to construct the matrix X. Seismic attribute 
estimates from a cdp gather adjacent the well 1608 are used to construct the matrix s*. 
Figure 6 illustrates the position of the well 1608 and the well 0808 used in the Blackfoot 
area. 

A posterior pdf )Xss( oγγφ =,,,|p *  is computed for each 10 m interval of the 
glauconitic channels. The final result is a collection of posterior pdfs representing one 
posterior pdfs for each 10 m layer. Figure 7 illustrates the results from three different 
porosity inversions using different amounts of seismic information. These are 
respectively a test using only p-wave elastic velocity, a test using only s-wave elastic 
velocity and using both p and s-wave velocities, resulting the following posterior pdfs: 

)XSs( op γγφ =,,,|p * , )XSs( os γγφ =,,,|p *  and )XSs( oγγφ =,,,|p * . Such posterior 
pdfs are presented by images with a colour scale. The vertical axis of these images 
represents the depth and the horizontal axis represents porosity values and the colour 
scale represents the probability amplitudes of the posteriors pdfs. The black line in the 
images represents the porosity model from core laboratory analysis. We can see from the 
spread of the posterior pdfs that the inversion of p-wave velocity has lower resolution 
than the when s-wave velocity. When both velocities are used together it has higher 
resolution. 

From analyses of these images together with the core sample porosity estimates one 
may conclude that the 10 m layer 1-D model does not have sufficient resolution to 
describe the sandstone channels.  A thinner layer model is necessary to describe the 
channels. This is a limitation of the vertical seismic resolution. It is a typical example of 
the ill-posed inverse problem.  

The seismic inversion is still the main challenge in this methodology. Resolution of 
the seismic inversion is currently being improved in two ways:  

i) pre-stack time migration has been carried out to enhance the 
signal to noise ratio;  

ii) an investigation is underway to evaluate the practicality of 
introducing prior information from a high-resolution seismic 
stratigraphic interpretation via regularization. 
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FIG 6: The base map of the area with the position of some well logs. 

 

FIG 7: These images represent the posterior pdfs for three different tests: using only p-wave 
velocity (left), using only s-wave velocity (centre) using both p and s-wave velocities (right). The 
vertical axis represents the depth and the vertical axis the porosity values. The colour bar scale 
represents the probability amplitude and the black line the porosity from laboratory analysis from 
core sample of the well 0808. 
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PRACTICAL IMPLEMENTATION 
Using a horizontal moving window, running across the reservoir volume (3-D) or a 

reservoir section (2-D), a distribution l2(s|φ) = l(s,P |S*,X,w) is calculated for a cell in the 
centre position of each window (the data vector s is the seismic attributes from cells 
falling inside the window). The Fresnel Zone can be considered for defining the 
dimension of the window, allowing it to vary across the reservoir. In the same way, 
l1(v|φ) is also computed for each cell position. Finally, both distributions are combined by 
the application of Equation (15) to yield one posterior pdf for each cell of the reservoir.  

Two volumes of the discretized reservoir represent the final results. One shows the 
mode of the posterior pdfs, representing the final estimated porosity model, and another 
shows the length of 0.95 posterior probability centred at the mode, representing the 
associated uncertainty model. 

Synthetic data example is presented to show how this methodology works. Three 
different tests are performed to evaluate the importance of each set of data v and s in 
increasing the confidence of porosity estimates: using only dataset s, which gives the 
posterior p(φ|s) ∝ l2(s| X,s*,φ)q(φ), using only the data set v, which gives p(φ|v) ∝ 
l1(v|φ)q(φ), and using both datasets ( p(φ|v,s) ∝ l(v,s| X,s*,φ)q(φ) ). 

SYNTHETIC DATA EXAMPLE 
Using a 2-D model of vertical and lateral changes in porosity (Figure 8) the seismic 

attributes p and s-wave velocities and density and the well logs: neutron porosity, 
compression and shear sonics velocities, density and gamma ray logs are simulated. The 
gamma ray log is used to obtain information about clay content of the medium. The clay 
content γ of this model is constant and equal 0.5 and the effective pressure is assumed 0.4 
kbar/cm3. 

 

FIG 8. Image representing the true porosity model used in the synthetic data example. Vertical 
lines show the locations of 5 wells distributed across the model. The colour bar scale represents 
the porosity. 

All simulated well log data are corrupted with pseudo-random gaussian noise with 
zero mean. Additionally, a systematic error component of 10 % is included in the neutron 
porosity log. The noise-corrupted logs, from the log at 1000 m distance in the Figure 8, 
are shown in Figure 9.  

The seismic attributes are simulated for the model of Figure 8. The standard deviation 
of the noise is defined based on examples of elastic inversion available at literature (e.g., 
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Debski and Tarantoa (1995)), respectively 10 %; 20 % and 30 % for p-wave velocity, s-
wave velocity and density respectively.  

 

FIG 9: Synthetic well log data for the first well (1000 m distance) represented in the model of 
Figure 8. These are, from left to right, neutron porosity, sonic logs (compression and shear wave 
velocities), density and gamma ray. All log data are corrupted with pseudo random Gaussian 
noise. In addition, the porosity neutron log has a shift of 10 % of the true porosity model to 
simulate a calibration error. The green line in the porosity log plot represents the true porosity. 

 

Figure 10: Seismic attributes p-wave velocity, s-wave velocity and density, respectively the 
images from top, meddle and bottom calculated from the geologic model (Figure 8). and 
corrupted with pseudo-random Gaussian noise with mean zero. 

As described above, the first step in the application of the proposed methodology is to 
precede the inversion of well-log data. These well-log inversions follow Loures (2002). 
Figure 11 shows the resulting porosity pdfs for each depth interval along the wells. The 
modes of these pdfs are estimates for interval porosity at the wells. Data vector v is 
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generated from the well porosities estimates using experimental horizontal variogram 
calculated with a lag spacing of 2 km.  

 

 

Figure 11: Images representing the distributions for interval porosity for each well from the model 
(Figure 8), as the results of the application of the inversion procedure by Loures (2002). For a 
fixed depth interval, the colour scale gives the posterior pdf for porosity. Porosity estimates are 
taken from the mode of the posterior at each depth interval. The spread of the distribution around 
the mode gives an idea of the associated uncertainty.  

The next step is the evaluation of both functions l1(v|φ) and l2(s|X,s*,φ) for each cell to 
compute the posterior pdfs as their product. To do that, an interpretative model composed 
of cells 100 m wide by 10 m thick is used. A moving 2-D window, covering three cells 
(10 x 300 m), is used to obtain the likelihood in each cell of the reservoir. As explained 
before, to evaluate the individual contributions of well information and seismic attributes 
data, the posterior distribution is computed using three different data combinations: using 
well and attribute data individually (p(φ|s) and p(φ|v)) and both datasets combined 
(p(φ|v,s)).  

To compute l2(s|X,s*,φ) the clay content γ is considered an a priori known parameter. 
These parameters are estimated for the cells at inter well space using the clay content 
estimation from the gamma ray log and a variographic modelling.   

The porosity models obtained by the mode of posterior distributions are shown in 
Figure 12. At the top, Figure 12A, one can find the result obtained just from the use of 
variogram data (v). The middle Figure 12B shows the result obtained just from the use of 
seismic attribute data (s). Finally, the bottom Figure 12C shows the result of using both 
data types (v and s). Reasonable models of porosity are obtained. The model shown by 
Figure 12A has a horizontal variation pattern characterized by step variations. The 
positions of these steps are related to the lag limits and well positions. The model shown 
by Figure 12B has high frequency horizontal variations derived from the random noise in 
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the seismic attribute data. The Figure 12C shows a porosity model that has a more slowly 
varying porosity than the model from Figure 12A and no high frequency variations 
around the well position, where the data v has more influence on the estimates. 

Figure 13 shows the length of the centred interval having 0.95 probabilities, 
corresponding to each one of the estimates in Figure 12. This gives a measure of the 
spread of the posterior pdf and the resolution for porosity of each cell of the reservoir. 
Figure 13A shows that the data v is more informative for cells near the well than for cells 
further away. Figure 13B shows that the information about porosity contained in the 
seismic attributes is homogeneously distributed across the section, yielding high-
frequency variations on the estimates. Figure 13C shows us an improvement of the 
resolution of a model when the porosity information from both well-log and seismic 
attributes data are integrated by the bayesian formulation. 

CONCLUSION 
The methodology presented is an approach to reservoir characterization fully 

grounded on the inversion theory, which is capable integrating multiple datasets in a 
straightforward way. The commonly employed formulations of the mathematical physics 
relating data and model parameters are replaced by empirical formulas of experimental 
rock physics. Geostatistics is also integrated through the experimental variogram and the 
corresponding formula, both used in the context of inversion theory. A synthetic data test 
using a slowly varying model demonstrated the consistency of the proposed 
methodology. 

The pre-stack seismic information is accessed via an elastic inversion. The real 1-D 
example shows that the elastic inversion is still the main challenge in this work. The main 
limitation is the vertical resolution of the model.   

Analysis of results of the synthetic 2-D example shows reasonable reconstructions of 
the true porosity model obtained from the mode of the posterior pdfs. The associated 
uncertainty, represented by the length of 0.95 probability intervals, consistently varies 
depending on the amount of information available. Higher resolution is obtained at the 
wells. The variogram fitting procedure allowed describing the information about the 
porosity from the wells at inter-well locations. For the inversion of seismic attributes 
alone the level of uncertainty varies homogeneously across the model. When combining 
variogram and attribute data, we observe that the overall uncertainty is reduced and the 
porosity model is better reconstructed. 
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FIG 12: Images of the reservoir section representing the modes of the posterior distributions by 
the use of variogram data (A), seismic attributes (B) and both datasets (C). 

 

FIG 13: Images of the reservoir section representing the length of the 0.95 probability interval of 
the posterior distributions obtained from the inversion of variogran values (A), seismic attributes 
data (B) and both datasets (C). 
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FUTURE WORK 
1. The application of the proposed methodology to 3D-3C Blackfoot seismic data 

(1995). 

2. An investigation of extensions of this methodology to infer other petrophysical 
properties has been started.  The evaluation of the viability of using other rock physics 
models to fluid property and permeability inferences has been started with a new 
Bayesian formulation. 

3. Implementations of the seismic elastic inference work to incorporate prior 
information from seismic stratigraphic interpretations and investigation of the use of the 
radial component in this process. 
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