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Exact wavefield extrapolation in 2D for v(x) 

Gary F. Margrave, Michael P. Lamoureux, Peter Gibson, Richard A. Bale, 
and Jeff Grossman 

ABSTRACT 
We pose the wavefield extrapolation problem in two spatial dimensions for arbitrary 

lateral velocity variation, v(x). Then, by restricting attention to the discretely sampled 
case, we develop an exact solution via an eigenvalue decomposition. The matrix that is 
decomposed is the difference between a diagonal matrix containing the squared 
horizontal wavenumbers and a Toeplitz matrix, scaled by frequency squared, containing 
the Fourier transform of the square on the inverse velocity. This solution gives an explicit 
decomposition of a wavefield into independent upward and downward travelling parts. 

We also analyze the continuous problem via functional analytic methods and, though 
we fail to reach a general solution, we demonstrate the independence of upward- and 
downward-travelling waves. In the specific case of the step velocity function, we 
calculate the eigenfunctions and exhibit a formula that determines the eigenvalues, 
though the latter must be solved numerically. 

Numerical testing shows that the exact extrapolator produces physically 
understandable result. When compared with three different approximate extrapolators 
based on Fourier integral operators, the approximate operators can be grossly wrong if a 
large extrapolation step is taken in the presence of strong velocity gradients. However, if 
the approximate operators are used in a recursion taking many small steps, they appear to 
approach the correct result. In a simulation of inversion with an erroneous velocity 
model, the three approximate extrapolators produce a very similar result to the exact 
extrapolator. This indicates that a very precise velocity model is required to take 
advantage of the exact extrapolator. 

INTRODUCTION 
Wavefield extrapolation is the central technology in the class of migration algorithms 

that, in somewhat inappropriate1 popular jargon, are commonly called wave equation 
methods. Usually applied in a marching scheme over depth, these methods are more 
appropriately called recursive wavefield extrapolation methods. Perhaps the first 
examples of such methods were the finite-difference techniques developed by Jon 
Claerbout and colleagues (see Claerbout, 1976). Later, other methods were developed 
such as phase shift (Gazdag, 1978), space-frequency extrapolation (Berkhout, 1981), 
phase shift plus interpolation (Gazdag and Squazerro, 1984), split-step Fourier (Stoffa et 
al., 1989), phase-screen (Wu, 1992, 1994), generalized screen methods (Le Rousseau and 
de Hoop, 2001), nonstationary phase shift (Margrave and Ferguson, 1999, Ferguson and 
Margrave, 2002) and recursive Kirchhoff (Bevc, 1997, Margrave and Daley, 2001, 
Margrave and Geiger, 2002) were developed. 

                                                 
1 Inappropriate because all successful migration algorithms have a wave equation as their basis. 
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For variable velocity, all of these extrapolation methods are approximate, and it is 
useful to have an exact solution to compare them to. Grimbergen et al. (1998) presented a 
nearly exact solution based on an eigenvalue decomposition in the ( ),x ω  domain for the 
discrete, 2D, problem. Their method handled arbitrary lateral velocity variations and 
arbitrary scattering angles (i.e. dips) but was approximate in that 2 2x∂ ∂  was represented 
by a standard three-point central difference operator. Yao and Margrave (1999 and 2000) 
presented the method discussed here which is exact in the 2D discrete case, though its use 
of discrete Fourier transforms means that wraparound is a significant problem. Yao and 
Margrave also use an eigenvalue decomposition but in the ( ),xk ω  domain where the 

2 2x∂ ∂  term can be accomplished exactly. Here we re-examine the Fourier-eigenvalue 
method of Yao and Margrave because: (1) the original solution technique was 
unnecessarily complex; (2) it is not well-known that this exact solution exists; (3) we 
wish to compare it with the approximate nonstationary phase shift methods; and (4) we 
are interested in its possible generalizations. 

In the next section we present a simplified and rigorous derivation of the exact 
Fourier-eigenvalue solution. We begin by posing the problem in the continuous case and 
reducing it to an integro-differential equation in the ( ),xk ω  domain. We then pass to the 
discrete (i.e. discretely-sampled) case and reduce the integral equation to a matrix 
equation that can be subjected to eigenvalue decomposition. The matrix involved consists 
of a diagonal matrix, with the values of 2

xk  down the diagonal, minus 2ω  times a 

Toeplitz matrix whose entries are the Fourier transform of ( )2v x− . This eigenvalue 
decomposition appears to always be possible (we have no proof of this) though it gets 
very expensive for large matrices. Given an eigenvalue decomposition, we present the 
general, exact solution to the wavefield extrapolation problem assuming the presence of 
both upward-travelling and downward-travelling waves. For the common seismic 
problem, we also give the solution for only upward-travelling waves. In a subsequent 
numerical example, we demonstrate that our exact solution is highly impacted by Fourier 
wraparound and, to control this, we introduce numerical dissipation through the artifice 
of a complex velocity. In our numerical examples, we explore the relationship between 
the exact solution and the approximate nonstationary phase-shift extrapolators. In 
particular, we show that the latter converge upon the exact result when applied in a 
recursion using very small depth steps. 

DERIVATION OF THE EXACT 2D EXTRAPOLATOR 

Posing the problem in the continuous case 

Let ( ), ,x z tΨ  be a 2D scalar wavefield that obeys the wave equation, 
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 ( ) ( )
( )

( )
2 2 2

2 2 2 2
1, , , , , ,x z t x z t x z t

x z v x t
Ψ Ψ Ψ∂ ∂ ∂+ =

∂ ∂ ∂
, (1) 

where we note that the velocity, ( )v x , is assumed to be independent of the vertical 
coordinate, z , but has arbitrary dependence upon the lateral coordinate, x . Letting 

( ), ,x zψ ω  be the Fourier transform over time of ( ), ,x z tΨ  as given by 

 ( ) ( ), , , , i tx z x z t e dtωψ ω Ψ −= ∫
!

, (2) 

where the subscript ! indicates that the integration is over the entire real line, then 
equation (1) leads to the Helmholtz equation for ( ), ,x zψ ω ,  

 ( ) ( )
( )

( )
2 2 2

2 2 2, , , , , ,x z x z x z
x z v x

ωψ ω ψ ω ψ ω∂ ∂ −+ =
∂ ∂

. (3) 

Now, we employ a further Fourier transform over the lateral coordinate, x , and obtain 

 ( ) ( ) ( )
2

2 2
2

� � ��, , , , , ,x x x xk k z k z s k z
z

ψ ω ψ ω ω ψ ω∂+ = − •
∂

 (4) 

where the hat, �⋅ , denotes the spatial Fourier transform as in 

 ( ) ( )� , , , , xik x
xk z x z e dxψ ω ψ ω= ∫

!

, (5) 

the bullet (• ) denotes convolution over lateral wavenumber, xk , and we have defined 

 ( ) ( )2s x v x−= . (6) 

The use of different signs in the complex exponential functions of equations (2) and (5) is 
deliberate. We rearrange equation (4) to write 

 ( ) ( ) ( ) ( )
2

2 2
2

� ��, , , ,x x xk z m k m s k m m z dm
z

ψ ω δ ω ψ ω∂  = − − − ∂ ∫
!

, (7) 

or 

 ( ) ( ) ( )
2

2
� �, , , , , ,x xk z M m k m z dm

z
ψ ω ω ψ ω∂ = −

∂ ∫
!

, (8) 

where 
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 ( ) ( ) ( )2 2 �, ,x x xM m k m k m s k mω δ ω= − − + − . (9) 

Solution of the discretely sampled case 

We now assume that ( ), ,x zψ ω  and ( )� , ,xk zψ ω  are regularly sampled in x  and xk  
respectively. Furthermore, we represent these wavefields as column vectors (of xk  
variation with constant ω ) and the integration of equation (8) as a matrix-vector product, 
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, (10) 

or symbolically,  

 
2

2
� �M

z
ψ ψ∂ = −

∂
. (11) 

The matrix, M , is the difference between a diagonal matrix containing the squares of the 

horizontal wavenumber and a Toeplitz matrix representing convolution with 2 �sω  
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Matrix M  can be written as an eigenvalue decomposition as 

 1M U UΛ −=  (13) 

where U  is the eigenvector matrix and Λ  a diagonal matrix with the eigenvalues of M  
on the diagonal. According to Strang (1986), almost every square matrix can be 
decomposed in this way though certain matrices have simpler decompositions. For 
example, a self-adjoint matrix (i.e., a matrix that is equal to the complex conjugate of its 
transpose) has real eigenvalues and orthogonal eigenvectors. This means that the inverse 
of the eigenvector matrix, U  is just its adjoint 1 �U U− = . The matrix M  in equation 12 
is easily shown to be a linear combination of two self-adjoint matrices and is therefore 
self-adjoint. However, in the next section we will introduce a small imaginary component 
of velocity to control Fourier wrap-around via a numerical attenuation. This destroys the 
self-adjoint property so we retain the notation 1U − . 

Now defining  
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 % 1 �Uψ ψ−=  (14) 

equation (11) transforms to 

 % %
2

2z
ψ Λψ∂ = −

∂
. (15) 

Let λ  denote the diagonal entries of Λ  (the eigenvalues) and then equation (15) has the 
general solution 

 % i z i zAe Beλ λψ + +−= +  (16) 

where by λ+  we mean the positive square root of each element of λ  and A and B are 
constants to be determined from the boundary conditions. The solution for ( ), ,x z tΨ  is 
then 

 ( ) { }( )1, ,
x

i z i zi t
k xx z t e F U Ae Be dλ λωΨ ω+ +−−

→
 = +  ∫ , (17) 

where 1
xk xF −
→  is the inverse discrete Fourier transform from xk  to x . From this result, 

and assuming that the z  coordinate is increasing downwards, it is apparent that i zAe λ+
 

represents upward-travelling waves while i zBe λ+−  has the interpretation of downward-
travelling waves.  

Thus we have an explicit, exact solution to the 2D, discrete wavefield extrapolation 
problem. Fishman and McCoy (1985) showed that it is always possible to factorize the 
Helmholtz equation, when velocity is a function only of the transverse coordinates, into 
terms representing upward- and downward-travelling waves. That is, upward- and 
downward-travelling waves are coupled (not independent) only if 0v z∂ ∂ ≠ . Fishman 
and McCoy exhibited only approximate forms for the wavefield factors. Equation (17) is 
an exact realization of the factorization in the specific 2D, discrete case. 

Boundary conditions and the explicit solution 
For a general solution, Cauchy boundary conditions are required on an open surface 

for hyperbolic PDE�s such as the scalar wave equation. That is, given the values of 
( ), 0,x z tΨ =  and 0( , , )z zx z tΨ =∂  (the vertical gradient of the wavefield) on the surface 

0z = , we can develop two equations that determine the unknown constants A and B, 
namely 



Margrave et al. 

6 CREWES Research Report � Volume 14 (2002)  

 
% ( )
% ( )

0

, 0,

, ,

x

x z

k z A B

k z i A i B
z

ψ ω

ψ ω λ λ+ +
=

= = +
∂ = −
∂

, (18) 

from which A  and B  can be uniquely determined. In this expression, 

 % ( ) ( )1, 0, , 0,
x

i t
x x kk z U F x z t e dtωψ ω Ψ− −

→

  
 = = =     

∫
!

 (19) 

is the suitably transformed boundary wavefield and similarly for the boundary gradient. 

When inserted into equation (17) we have an expression for the exact extrapolation of the 
total wavefield from 0z =  to any other datum (i.e. surface of z constant= ). However, in 
the seismic imaging problem, 0( , , )z zx z tΨ =∂  is not readily available; consequently, we 

make the common assumption that ( ), ,x z tΨ  contains only upward-travelling waves and 
so develop the general extrapolation equation, 

 ( ) % ( ){ }( )1, , , 0,
x

i zi t
k x xx z t e F U k z e dλωΨ ψ ω ω

+−
→

 = =  ∫ . (20) 

Equation (20) provides the complete, exact extrapolator in the ( ), ,x z t  domain. In the 
eigenvalue domain, there is a much simpler extrapolation expression 

 % %( ) ( 0) i zz z e λψ ψ
+

= = . (21) 

In using equation (21) or equation (20) care must be taken to properly handle the case 
when 0λ <  as this generates real-valued exponential decay or growth instead of the 
wavelike oscillations when 0λ > . We reject the possibility of exponentially growing 
solutions on physical grounds and modify equation (21) to read 

 % % ( ) ( )real imag
( ) ( 0)

iz z
z z e

λ λ
ψ ψ

+ +−
= = . (22) 

Equation (20) can be similarly modified. 

Investigation of the continuous case 
While we have not solved the continuous case, we have been able to draw some 

interesting conclusions. Returning to the Helmholtz equation (equation 3), we rearrange 
it as 

 ( ) ( )
( )

( )
2 2 2

2 2 2, , , , , ,x z x z x z
z x v x

ωψ ω ψ ω ψ ω∂ ∂= − −
∂ ∂

 (23a) 

and convert to a parameterized functional equation 
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2

2
d u A u
dz ω= −  (23b) 

where we treat u  as a map from the real line !  to the space ( )2L !  of square integrable 

functions, and Aω  a (parameterized) differential operator on ( )2L ! . More precisely, 

each function ( ) ( )2u z L∈ !  evaluates pointwise as 

 ( )( ) ( ), ,u z x x zψ ω=  (24) 

and Aω  is a map, from a dense subset of differentiable functions φ  in ( )2L !  into 

( )2L ! , given as 

 ( )( ) ( )
( )

( )
2

2A x x x
v xω

ωφ φ φ′′= + . (25) 

For real parameter ω  and velocity field ( )v x , and reasonable boundary conditions 
defining the domain of operator Aω , this operator is an unbounded self-adjoint operator 

on ( )2L ! . Thus the functional calculus may be applied and we can compute directly 

with the operator Aω . In particular, the square root 1/ 2Aω  exists, and the solution to the 
functional equation is given by the usual exponential form for an ordinary differential 
equation with operator Aω  playing the role of a �constant�. Then, the function u  in the 
form 

 ( ) 1/ 2 1/ 2

1 2
izA izAu z e eω ωφ φ−= +  (26) 

is the general solution to the functional form of the Helmholtz equation. 

Cauchy boundary conditions determine functions 1φ  and 2φ  uniquely, via the 2 by 2 
linear syste, 

 ( ) 1 20u φ φ= +  (27) 

 ( ) ( )1/ 2
1 20u iAω φ φ′ = − . (28) 

However, in a typical seismic experiment, it is common to interpret the two exponentials 
as representing the sum of upward-travelling waves with downward-travelling waves, 
and eliminate one of the two as appropriate for the physics of the experiment. Which 
term is upward, and which is downward, depends on the particular choice of the square 
root operator. 
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Computing the operators 
1/ 2izAe ω  and 

1/ 2izAe ω−  involves performing an infinite 
dimensional eigenvalue decomposition for the self-adjoint operator Aω . Formally, one 
may write 

 
1/ 2 1/ 2izA ize e dPω λ

λ

∞

−∞

= ∫  (29) 

where { }Pλ  is a projection-valued measure on ( )2L !  coming from the spectral 
decomposition of the operator Aω . Actually computing this operator for a general 
velocity field ( )v x  is quite complex and not practical for real geophysical problems. So, 
instead of finding a general solution, we will consider an exact solution for an artificial, 
but basic case of interest, useful for testing other approximate solutions. 

We consider a stepped velocity wavefield 

 ( ) 0
0

v x
v x

v x
−

+

<
=  < . (30) 

To compute the spectral decomposition for Aω , we find the eigenfunction solutions to 

 2
k kA kωψ ψ= , (31) 

where 2k  denotes the corresponding eigenvalue, and for which k  will be the eigenvalue 
for 1/ 2Aω . Since Aω  is self-adjoint, the eigenvalue 2k  is necessarily real, but possibly 
negative. Thus we allow for the possibility that k  may be real or imaginary. 

The eigen-equation is a second-order, ordinary differential equation in x , with 
constant coefficients on each of the two halves of the real line, so the solution is easily 
obtained in the form 

 ( )
2 2 2 2 2 2

2 2 2 2 2 2

/ /

/ /

0

0

ix k v ix k v

k
ix k v ix k v

ae be x
x

ce de x

ω ω

ω ω
ψ

− −

+ +

− − −

− − −

 + <= 
 + >

 (32) 

The scalars , , ,a b c d  are chosen so that the function kψ  and its first derivative are 
continuous across 0x =  and satisfy the given boundary conditions. When Aω  has no 
boundary (i.e. x−∞ < < ∞ ), there is a continuum, of eigenvalues , a situation we don�t 
wish to explore here. With finite boundary ( )L x L− ≤ ≤ , the spectrum of Aω  is an 
unbounded sequence of discrete points on the real line. 

At least two standard choices are available for a self-adjoint, finite boundary 
condition: the usual Dirichlet condition 
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 ( ) 0k Lψ ± =  (33) 

and the Neumann condition 

 ( ) 0k Lφ′ ± = . (34) 

Either condition will force reflections at the artificial boundaries x L= ± , which is a non-
physical artefact of the mathematical model for the seismic imaging experiment. 
However, by taking L  sufficiently large, we may assume this boundary is sufficiently far 
away for the seismic sources and receivers to cause no interference (in a given finite 
amount of time). For definiteness, let us take Dirichlet boundary conditions. 

For the Dirichlet boundary condition, the condition that kψ  vanish at the endpoints 
simplifies the solution to the form 

 ( )
( )( )
( )( )

sin 0

sin 0
k

a x L x
x

b x L x

κ
ψ

κ
−

+

 ′ + <= 
′ − >

 (35) 

where we have introduced the quantities 2 2 2/k vκ ω− −= −  and 2 2 2/k vκ ω+ += − . 
Continuity for the function and its derivative across the point 0x =  requires 

 ( ) ( )sin sina L b Lκ κ− +′ ′= −  (36) 

and 

 ( ) ( )cos cosa L b Lκ κ κ κ− − + +′ ′= , (37) 

from which we conclude that 

 ( ) ( )tan tanL Lκ κ
κ κ

+ −

+ −
= − . (38) 

Remembering that κ+  and κ−  are related through the parameter 2k , this last equation 

implies that only a discrete set of value for 2k  allows for a solution. Thus the spectrum is 
discrete. 

In the trivial case of v v+ −=  (constant velocity field), the only solutions are when Lκ  

is a multiple of π , and thus 2 2 2 2 2 2/ /k v n Lω π= + , for some integer n , as expected. 
When the velocities ,v v+ −  are different, equation (38) can be solved numerically; 

however, we are unaware of an analytical formula that finds this set of values for 2k . 

When κ+  and κ−  are both positive, the eigenfunction is simply two sine waves of 
different frequencies joined together smoothly at 0x = . If one of the κ  is imaginary, we 
have a sine wave joined to a hyperbolic sine (a sum of exponentials). This situation gives 
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evanescent waves for the imaginary κ , which are an important component of a complete 
wavefield simulation. If both of the κ �s are imaginary, no solution is possible. 

Once these eigenvalues are found as discrete solutions to equation (38), the rest of the 
analysis is routine. The eigenfunctions kφ  are normalized so their [ ]2 ,L L L−  norm is one; 
any function φ  in the space can be expanded as a superposition of these eigenfunctions 

 , k k
k

φ φ φ φ=∑ ; (39) 

and the action of the operators Aω , 1/ 2Aω , and 
1/ 2izAe ω  are given via their action on 

eigenfunctions. For instance 

 1/ 2 , k k
k

A kω φ φ φ φ=∑  (40) 

and 

 
1/ 2

,izA izk
k k

k
e eω φ φ φ φ=∑ . (41) 

Unfortunately, since the discrete eigenvalues are not uniformly spaced, a Fast Fourier 
Transform (FFT) is not available to compute the coefficients , kφ φ . 

While we were not able to construct a solution for general ( )v x , we were able to 
demonstrate the Fishman and McCoy (1985) conclusion that upward- and downward-
travelling waves are completely independent. Also, we were able to obtain a nearly 
analytical formula for the prototypical stepped velocity case on a finite interval. Our 
formula requires a numerical calculation of the eigenvalues from a transcendental 
expression arising from the boundary conditions. 

A 2D NUMERICAL IMPLEMENTATION 
Here we present a simple numerical implementation in the MATLAB language. Early 

in its implementation, a major problem related to Fourier wraparound was encountered. 
Figure 1 shows a simple step velocity model superimposed on an assumed input 
wavefield ( ( ), 0,x z tΨ = ) containing a single bandlimited impulse positioned just to the 
left of the velocity step. In Figure 2, the result of a direct implementation of the exact 
algorithm is shown for an extrapolation step of 200 metres upward. This result is highly 
unsatisfactory because it is dominated by unwanted algorithmic artefacts. To demonstrate 
this, Figure 3 is another extrapolation, identical in all respects except that the velocity 
function was given a small (1%) imaginary component. This causes all elements of λ+  
to have small imaginary components and, in the light of equation (22) will cause a small, 
artificial attenuation that is much like a Q effect. Thus events with larger traveltimes 
suffer greater attenuation and Fourier wraparound is effectively reduced. There are three 
obvious events remaining in Figure 3, all with direct physical explanations. Thus we 
conjecture that the events and noise in Figure 2 that are not obviously present in Figure 3 
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result from the superposition of Fourier wrap-around effects. Since there are infinitely 
many periodic �aliases� of the desired model induced in 2!  by the two-dimensional DFT 
(over ( ),x t ), the wraparound can be very strong. All remaining results shown in this 
paper use this 1% imaginary velocity adjustment. 

The exact algorithm presented in this paper is computationally intensive and is 
probably not viable in a seismic imaging method at present. However, it is still very 
useful because it can be compared with various faster, though approximate techniques. 
Here we examine the NSPS (nonstationary phase shift) and generalized PSPI (phase shift 
plus interpolation) methods presented in Margrave and Ferguson (1999). Also, we look 
at the Weyl extrapolator presented in Margrave and Ferguson (1998) and Margrave and 
Daley (2001). In assessing the results to come, it must be remembered that the PSPI 
results shown here are not computed through any sort of interpolation scheme between 
reference velocities. Rather, the generalized PSPI (GPSPI hereafter) algorithm is 
formulated as a Fourier integral operator that is the limiting form (in the limit of a 
complete set of reference velocities) of the interpolation algorithm of Gazdag and 
Squazerro (1984). Another important property is that GPSPI is also the limiting form (in 
the limit of an infinitely long operator) of ( ),x ω  explicit finite-difference wavefield 
extrapolation (Etgen, 1994). Furthermore, the generalized screen propagators (GSP1 and 
GSP2) of Le Rousseau and de Hoop (2001) are both approximate realizations of GPSPI. 
So, in a broad sense, the comparison to GPSPI is a comparison to the best extrapolation 
techniques that are in current practice. The NSPS algorithm is the spatial transpose of 
GPSPI in the ( ),x ω  domain. The Weyl algorithm is intermediate to NSPS and GPSPI 
and is patterned after a form proposed by Weyl (1931) for a self-adjoint 
pseudodifferential operator in Quantum mechanics. 

These three approximate extrapolators are distinguished by how they handle the 
velocity field in taking a single depth step. Let �x  denote the set of lateral coordinate 
positions of each grid point at the starting depth level and let x  denote the set of lateral 
coordinate positions at the extrapolated depth level. By �kx  and kx  we refer to particular 
points in the input or output grids. GPSPI computes the extrapolated wavefield for a 
specific point kx  by propagating the data on straight raypaths from each point in �x  to kx  
using constant velocity along each ray given by the velocity at kx  (i.e. at the end of each 
ray). In contrast, NSPS images the same point in x  with the same straight raypaths but 
assumes a constant velocity along the kth raypath given by the velocity at �kx  (i.e. at the 
beginning of each ray). Finally, the Weyl operator also uses the same straight raypaths 
but uses the average of the velocities at the beginning and ends of each ray. 

Figures 4, 5, and 6 show the results of single 200 m upward steps2 with NSPS, GPSPI, 
and Weyl respectively. Though grossly wrong in comparison with the exact answer 
(Figure 3) these results are exactly as expected from the known approximations in these 
two algorithms. NSPS extrapolates the wavefield using locally constant velocity as a 
function of the input coordinate. This means that each impulse in the input wavefield is 
                                                 
2 A 200 m extrapolation step is about 20 times larger than standard practice but is used here to exaggerate 
the effects for easier comparison. 
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pushed out (propagated upward) with the velocity at the x-location of the impulse. Since 
the single impulse here is in the low-velocity medium, the result is a single low-velocity 
hyperbola. In contrast, GPSPI extrapolates using the lateral velocity variation at the 
output coordinate. The result is that the single input impulse is drawn upward at the 
velocity appropriate for each output coordinate. The result is a discontinuous response 
with the discontinuity exactly at the velocity interface. Finally, the Weyl extrapolator 
produces a result that is intermediate to those of NSPS and GPSPI. 

While all three of these results are clearly wrong, it is interesting to observe that if the 
approximate extrapolators are applied in a recursive series of smaller steps, the result is 
much more like the exact answer. This is shown in Figures 7, 8, and 9 where each of the 
algorithms took ten, 20 m upward steps. Comparison with Figure 3 shows that each 
algorithm has formed a reasonable approximation to the exact result. 

Figures 10, 11, and 12 show in more detail how these approximate algorithms 
converge upon the correct answer as the step size becomes smaller. For each algorithm, 
four panels are shown giving the results of 1, 2, 5, and 10 steps over a total distance of 
200 meters. (The 1 step and 10 step results are the same as already shown in previous 
figures). These figures are shown with some amplitude clipping in order to make the 
details more obvious. Figure 13 shows the results from the exact extrapolator for each of 
these four instances. The exact extrapolator produces an identical result regardless of the 
number of steps taken. 

Figure 14 shows an input wavefield containing 8 impulses whose extrapolations 
through the step velocity model (Figure 1) are shown in the next four figures. Figure 15 
shows an exact extrapolation 200 m upwards. Of particular note is the refraction of the 
diffraction tails as they cross they velocity discontinuity. In comparison, the NSPS result 
in Figure 16 has the diffraction tails crossing the velocity discontinuity without any 
refraction. In Figure 17, the GPSPI result has an extreme discontinuity in the wavefield at 
the velocity discontinuity. Though the GPSPI result appears less physical than NSPS, the 
results shown previously suggest that both converge to the right answer in a similar 
number of steps. The Weyl extrapolation in Figure 18 has again produced a result that is 
intermediate to NSPS and GPSPI. 

Figure 19 shows a more complex velocity model created by superimposing a random 
(normally distributed) fluctuation with standard deviation of 500 m/s on top of the step 
model of Figure 1. This noisy step model was then lowpass-filtered to pass only 
wavenumbers up to 10% Nyquist to create the filtered step model. Figure 20 is a 200 m 
upward exact extrapolation through the filtered step model while Figure 21 is a similar 
result but the noisy step model was used. 

As a final test of the approximate extrapolators, we illustrate their abilities to focus, 
through downward extrapolation, the exact upward extrapolations created with the three 
velocity models: velocity step (Figure 1) and the noisy step and filtered step (Figure 19). 
In each case, we tested each approximate extrapolator by stepping down 200 m in either 
1, 2, 5, or 10 steps. 

Figures 22, 23, and 24 show the results using the NSPS, GPSPI, and Weyl 
extrapolators for the step velocity model with the wavefield of Figure 16 as input. We 
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have compressed the output to show four extrapolations in a single figure. Somewhat 
surprisingly, it appears that NSPS has done the best job of imaging the point just to the 
right of the velocity discontinuity. All three extrapolators have done a similar job 
elsewhere. 

Figures 25, 26, and 27 are the results using the three extrapolators for the filtered step 
model with the wavefield of Figure 20 as input. This time, after 1 step, only the Weyl 
extrapolator has produced a result on which all eight focal points can be distinguished. 
Even after 2 steps, Weyl is still clearly better. After 5 and again after 10 steps, it appears 
that NSPS has becomes as clear as Weyl while GPSPI is slightly inferior. 

Figures 28, 29, and 30 perform this same test using the noisy step model (Figure 19) 
and the wavefield of Figure 21 as input. This is a very extreme test and all three 
extrapolators failed to produce an image on which all eight focal points could be 
identified. The extrapolators had more trouble on the low velocity side (left) than on the 
high velocity side. Examining the three results after 10 steps, it appears that GPSPI is 
again slightly inferior to the other two extrapolators. 

Figure 31 shows that the exact extrapolator inverts itself exactly using any number of 
steps. We use the word �exactly� here with some reservation because we did not invert 
the evanescent velocity field but simply extrapolated downward with the evanescent field 
still being attenuated. The result is independent of the number of recursive steps taken 
over the 200 m interval (as it should be). In the case of the noisy step model, there does 
appear to be some reduction in amplitude of the fifth focal point. 

In Figures 32, 33, and 34 we simulate running the extrapolators with an erroneous 
velocity model. In Figure 32 are results from all four extrapolators using the data from 
the noisy step model (Figure 21) and the filtered step velocity model. Thus the velocity 
model is much smoother than the correct model, a circumstance that is probably common 
with real data. It appears that the exact extrapolator has produced a better image but only 
marginally so. In Figure 33, the noisy step data has been inverted with the step velocity 
model, an even more smoothed model except for the discontinuity. Here we see almost 
identical performance from the four extrapolators. (The exact extrapolator gets this result 
in one step while the approximate ones require 10 steps.) A very similar story emerges in 
Figure 34 where we have used the data from the filtered step and the step velocity model. 

CONCLUSIONS 
The 2D, discrete wavefield extrapolation problem can be solved exactly for arbitrary 

lateral velocity variations. The solution is developed via an eigenvalue decomposition in 
the Fourier domain. The matrix that is decomposed is the difference between a diagonal 
matrix containing the squared horizontal wavenumbers and a Toeplitz matrix, scaled by 
frequency squared, containing the Fourier transform of the square on the inverse velocity. 
This solution gives an explicit decomposition of a wavefield into independent upward 
and downward travelling parts. 

We also analyze the continuous problem via functional analytic methods and, though 
we fail to reach a general solution, we demonstrate the independence of upward and 
downward-travelling waves. In the specific case of the step velocity function, we 
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calculate the eigenfunctions and exhibit a formula that determines the eigenvalues, 
though the latter must be solved numerically. 

Numerical testing shows that the exact extrapolator produces physically 
understandable result. When compared with three different approximate extrapolators 
based on Fourier integral operators, the approximate operators can be grossly wrong if a 
large extrapolation step is taken in the presence of strong velocity gradients. However, if 
the approximate operators are used in a recursion taking many small steps, they appear to 
approach the correct result. In a simulation of inversion with an erroneous velocity 
model, the three approximate extrapolators produce a very similar result to the exact 
extrapolator. This indicates that a very precise velocity model is required to take 
advantage of the exact extrapolator. 
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FIG. 1: The input wavefield and the velocity model for Figures 2-18 

 

FIG. 2: After extrapolation of the wavefield of Figure 1 upward 200 m using the step velocity field 
also shown in Figure 1. 
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FIG. 3: Similar to Figure 2 except the velocity field was given an imaginary component of 1% of 
the real component. 

FIG. 4: A result comparable to that of Figure 3 except that the approximate NSPS extrapolator of 
Margrave and Ferguson (1999) was used. 
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FIG. 5: A result comparable to that of Figure 4 except that the approximate PSPI extrapolator of 
Margrave and Ferguson (1999) was used. 

 

FIG. 6: A result comparable to that of Figure 4 except that the approximate Weyl extrapolator was 
used. 
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FIG. 7: The result from 10 steps of 20 metres each in the upward direction using the NSPS 
algorithm. Compare with Figures 3 and 4. 

FIG. 8: The result from 10 steps of 20 metres each in the upward direction using the PSPI 
algorithm. Compare with Figures 3 and 5. 



Margrave et al. 

20 CREWES Research Report � Volume 14 (2002)  

 

FIG. 9: The result from 10 steps of 20 metres each in the upward direction using the Weyl 
algorithm. Compare with Figures 3 and 6. 
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FIG. 10: Variation with number of steps of the NSPS solution for the model of Figure 1. Each 
panel shows the result of a 200 m upward extrapolation with the indicated number of steps. In 
each case, the actual step size was 200m/(number of steps). These results are clipped to show 
detail. 
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FIG. 11: Similar to Figure 10 except that the PSPI algorithm was used. 
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FIG. 12: Similar to 10 except that the Weyl algorithm was used. 
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FIG. 13: Similar to 10 except that the exact algorithm was used. Unlike the approximate 
extrapolators, the exact extrapolator gets the same result independent of the number of steps. 
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FIG. 14: An input wavefield containing 8 bandlimited impulses. 
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refractions

 

FIG. 15: An exact extrapolation of the wavefield of Figure 14 through the step velocity model of 
Figure 1. Note the refractions of the diffraction tails as they cross the velocity discontinuity. Two 
are noted explicitly. 

 

FIG. 16: An NSPS extrapolation of the wavefield of Figure 14 through the step velocity model of 
Figure 1.  
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FIG. 17: A PSPI extrapolation of the wavefield of Figure 14 through the step velocity model of 
Figure 1.  

 

FIG. 18: A Weyl extrapolation of the wavefield of Figure 14 through the step velocity model of 
Figure 1. 
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FIG. 19: The step velocity model of Figure 1 has been altered with a random fluctuation 500 m/s 
(standard deviation) and then lowpass-filtered to 10% of Nyquist. These will be called the �noisy 
step� and the �filtered step� models. 

 

 

FIG. 20: The exact extrapolation of the wavefield of Figure 14 after a 200 m upward step through 
the filtered step velocity model of Figure 19. 
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FIG. 21: The exact extrapolation of the wavefield of Figure 14 after a 200 m upward step through 
the noisy step velocity model of Figure 19. Compare with Figure 20. 
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Fig 22: Four different 200 m downward extrapolations with the NSPS extrapolator using the 
indicated number of steps. The input was the wavefield of Figure 16 and the velocity was the 
velocity step of Figure 1. 
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Fig 23: Four different 200 m downward extrapolations with the GPSPI extrapolator using the 
indicated number of steps. The input was the wavefield of Figure 16 and the velocity was the 
velocity step of Figure 1. 
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Fig 24: Four different 200 m downward extrapolations with the Weyl extrapolator using the 
indicated number of steps. The input was the wavefield of Figure 16 and the velocity was the 
velocity step of Figure 1. 
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Fig 25: Four different 200 m downward extrapolations with the NSPS extrapolator using the 
indicated number of steps. The input was the wavefield of Figure 20 and the velocity was the 
filtered velocity step of Figure 19. 
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Fig 26: Four different 200 m downward extrapolations with the GPSPI extrapolator using the 
indicated number of steps. The input was the wavefield of Figure 20 and the velocity was the 
filtered velocity step of Figure 19. 



Exact extrapolation 

 CREWES Research Report � Volume 14 (2002) 29 

1 step 2 steps

5 steps 10 steps

1 step 2 steps

5 steps 10 steps

 

Fig 27: Four different 200 m downward extrapolations with the Weyl extrapolator using the 
indicated number of steps. The input was the wavefield of Figure 20 and the velocity was the 
filtered velocity step of Figure 19. 
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Fig 28: Four different 200 m downward extrapolations with the NSPS extrapolator using the 
indicated number of steps. The input was the wavefield of Figure 21 and the velocity was the 
noisy velocity step of Figure 19. 
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Fig 29: Four different 200 m downward extrapolations with the GPSPI extrapolator using the 
indicated number of steps. The input was the wavefield of Figure 21 and the velocity was the 
noisy velocity step of Figure 19. 
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Fig 30: Four different 200 m downward extrapolations with the Weyl extrapolator using the 
indicated number of steps. The input was the wavefield of Figure 21 and the velocity was the 
noisy velocity step of Figure 19. 



Exact extrapolation 

 CREWES Research Report � Volume 14 (2002) 31 

1 step 10 steps

1 steps 10 steps

1 step 10 steps

1 steps 10 steps

 

Fig 31: Top: The result of an exact downward extrapolation of the wavefield of Figure 20 using 
the filtered step velocity model. Bottom: The result of the exact downward extrapolation of the 
wavefield of Figure 21 using the noisy step velocity model. 
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FIG. 32: The results of four different 200 m downward extrapolations in 10 steps of the wavefield 
in Figure 21 using the filtered step velocity model of Figure 19. 
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FIG. 33: The results of four different 200 m downward extrapolations in 10 steps of the wavefield 
in Figure 21 using the step velocity model of Figure 1. 
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FIG. 34: The results of four different 200 m downward extrapolations in 10 steps of the wavefield 
in Figure 20 using the step velocity model of Figure 1. 


