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The impact of attenuation on the resolution of multicomponent 
seismic data 

Richard A. Bale and Robert R. Stewart

ABSTRACT 
In this paper, we undertake a comparative analysis of the expected effect of constant Q 

absorption on different modes, illustrating these effects by modelling absorption for 
homogeneous and layered models.  We find that when S- and P-wave attenuation filters 
are compared in depth, they are exactly equal for the same Q value, in the homogeneous 
case.  Higher wavenumbers for given frequencies in the source wavelet give an initial 
advantage to S-wave resolution in depth, which may be lost to attenuation if S-wave Q is 
less than P-wave Q, and/or if there are very low shear velocities in the near surface.  
Finally, dispersion, which inevitably accompanies attenuation, will differ for P and S 
modes with different Q values, resulting in event correlation errors. One, perhaps 
surprising, implication of this work is the need for better low-frequency recording to 
enhance shear-wave resolution. Additionally we provide relationships between interval 
and effective parameters including a Dix type inversion formula which could be used to 
derive shear-wave Q values from converted wave data. 

INTRODUCTION 
An important practical question for multicomponent seismic surveys is how 

absorption impacts shear or converted-wave resolution compared with that of P-waves.  
Converted-waves (specifically, those converting from P to S upon reflection) have the 
potential for providing higher resolution than P-waves, due to the shorter wavelengths 
associated with the same temporal frequencies.  In practice, it is often observed that 
converted-wave resolution does not reach this ideal, particularly at depth.  One possible 
reason suggested for this is the stronger effect of Q attenuation upon converted-waves.  
When considering the effect of absorption on converted-waves, we must consider two 
different values QP and QS, in much the same way as a medium has two different 
velocities VP and VS.    

Rock physics provides a theoretical relationship, derived from complex elastic moduli, 
connecting the P-wave, S-wave, and bulk compressional Q values, QP, QS, and QK, as 
follows (e.g. Winkler and Nur, 1979): 
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From this equation, and assuming an infinite value for QK, Udias (1999) argues that QS 
can be expected to be 4/9 of QP (if SP VV 3= ).  Whilst this is theoretically true for a dry 
medium, Winkler and Nur (1979) showed that for saturated or partially saturated media, 
one could equally find PK QQ ≤ , in which case we would have PS QQ ≥  .   
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For a homogeneous medium, in the case where QS > QP, the PS resolution is expected 
always to exceed that of PP.  Deffenbaugh et al. (2000) considered the case of a 
homogeneous medium with QS lower than QP, assuming a zero-phase Q response.  They 
concluded that, in this case, there is a �crossover� point of equal PP and PS resolution, 
with the PS resolution surpassing that of PP above the crossover, but becoming poorer 
than PP below it.  Our modelling confirms that Deffenbaugh et al.�s result holds true 
when minimum-phase dispersion is included.    

The homogeneous case with QS=QP was also considered recently by Garotta and 
Granger (2001).  Their analysis is consistent with this paper, but also considers the 
important issues of amplitude differences between PP and PS modes, and signal to noise.   
For example, in the case where the average PS amplitude is half that of PP, with the same 
noise level, they note that attenuation can have a larger impact on shear wave resolution 
at depth, because the amount of signal above the noise floor is lower. 

In this paper, we also consider the case where the medium is vertically 
inhomogeneous, with a variable VP/VS ratio.  Our results indicate that velocity plays a 
rôle of equal importance to resolution as that of Q. 

THEORY 
A widely used model of seismic attenuation in the earth assumes a Q value that 

depends upon the medium, but not upon frequency � within the bandwidth of interest.  
This is known as the �constant Q model� of absorption, and a significant body of theory 
has been developed based upon it (e.g., Kjartannsen, 1979).  Based on this assumption, a 
differential equation for the amplitude attenuation law can be obtained, which has the 
following solution: 

  ( ) ( )QcxAxA 2exp0 ω−=  , (1) 

where A0 is the initial amplitude of a harmonic wave of frequency ω, and A(x) is the 
amplitude after propagation by a distance x at velocity c, through a medium with a 
constant quality factor Q.   

The application of equation (1) to a propagating pulse gives rise to a pulse that 
broadens symmetrically about a central peak.  This situation entails a violation of 
causality, since some energy arrives before it has had the time to physically propagate.  In 
a classic paper, Futterman (1962) showed, based on a causality argument, that there must 
inevitably be dispersion (velocity dependence on frequency) accompanying attenuation.  
He derived the attenuation-dispersion relationship when Q is constant over a wide range 
of frequencies. The resulting revised law of attenuation (see Appendix A) is given by the 
following equation: 

 ( ) ( ) ( )[ ]( )xixAxA ωαωα Hexp0 +−=  (2) 

where H is the Hilbert transform, with respect to ω, and ( )
Qc2
ω

ωα ≡ .   
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Equation (2) may be recast in the time domain as follows: 
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Equation (2) may also be transformed to consider attenuation as a function of distance, 
x, and wavenumber, ck /ω= : 
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Placing equation (2) within the context of a propagating pulse, with an initial spectrum 
),0( ωu at 0=x , the pulse at a distance x, is ),( txu , given by the following inverse 

Fourier transform: 

 ( ) ( )( ) ( )1( , ) (0, ) exp H
2

xu x t u i x c t i x e dα ωω ω α ω ω
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∞
−
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where c is the limiting velocity of the wave at the maximum frequency.   

Q filters for pure and converted modes 
We now derive the two-way Q-filter for PP, PS and SS waves, where in general 

PS QQ ≠ . Consider, for simplicity, the case of a single homogeneous layer with velocities 
,P SV V , and Q values SP QQ ,  for the P and S waves respectively (Appendix B considers 

the more general, layered media, case).  Expressed in the frequency domain, the PP Q-
filter is simply the product of the one-way filter for P-waves with itself: 

  ( )[ ] ( )( )zziz
V
izF PP

P
PP ωαωαωω 2expH22exp),( −
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noting that we replace x by z, since we consider propagation in the vertical direction 
only.   

Similarly, the SS Q-filter is given by: 

 ( )[ ] ( )( )zziz
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and finally the PS (or SP) Q-filter is obtained by multiplying a 1-way P-wave filter by a 
1-way S-wave filter: 
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Equation (8) can be expressed in the following form: 
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by exploiting the linearity of the Hilbert transform, H, and making the following 
definitions:  

 ( )
PSPS

SPPS VQ22
1 ω

ααα =+≡ ,  (10) 

 







+=

PPPS VVV
11

2
11 , (11) 

and 







+=

SSPP

PS

PS VQVQ
V

Q
11

2
1 . (12) 

 

As before, the Q filters described by equations (6) and (9) can be expressed in terms of 
two-way time, setting PPP VzT /2= , and SPPSPS VzVzVzT ///2 +==  to give: 
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Comparison of equations (13) and (14) readily shows, in the case QS=QP=Q (which 
also implies QPS=QP), that for any given depth of propagation and temporal frequency, ω, 
the S-wave attenuation is stronger than the P-wave attenuation, because TPS>TPP, for a 
given depth.  This is intuitively sensible, since the slower shear velocity implies that the 
wave uses more cycles propagating from any given depth as an S-wave than as a P-wave. 
But this conclusion is unduly pessimistic for the following reason: ultimately, for the 
interpreter, the important criterion is the ability to resolve strata in depth, not in time.  
When interpreting time sections, the time scale of the PS events must be compressed to 
compare with P-wave events.  Whether or not the data are transformed explicitly from 
time to depth, we must compare PP and PS resolution based on a common vertical 
coordinate. The resolution difference in the temporal frequency domain is compensated 
by the compression of the PS time scale required to compare it with PP time. 
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It is therefore convenient to consider attenuation as a function of depth and the real 
(undispersed) part of the wavenumber, ck /ω= , giving: 
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where 

 PPP Vk /ω≡  and PSPS Vk /ω≡ . (17)  

It is worth pointing out that these wave-numbers differ slightly from the true wave-
numbers, which include dispersion.  However, we shall assume that when the PP or PS 
traces are transformed to depth for comparison, the resulting wave-numbers are those 
given by (17).  In other words the depth mapping corresponds to the limiting phase 
velocity at ∞ω . 

In the homogeneous case, comparing P and S filter responses for the same 
wavenumber (necessarily corresponding to different temporal frequencies), we see that in 
the case that QS=QP=Q, the predicted attenuations are the same.  To see why this is so, 
recall that the number of cycles executed for a particular wavelength is given by distance 
travelled divided by wavelength, and does not depend upon the velocity. 

Layered Media 

In the case of a layered medium and considering the simplest case of vertical wave 
propagation (hence using z instead of x for distance), the Q filters may be combined 
recursively for each layer (see Appendix B).   The result is that equation (2) holds true 
where Q is replaced by an �effective Q� value, Qeff, given by: 

 ∑
=

∆=
N

n
nnneff cQzQT

1
, (18) 

where   ∑
=

∆≡
N

n
nn czT

1

. 

Here 1−−≡∆ nnn zzz  is the thickness of layer n, cn is the velocity, and Qn the Q value, 
in layer n.  T is the total one-way travel time.  An integral expression for effective Q, 
equivalent to (4), is given in Bickel and Natarajan (1985). 

As shown in Appendix B, a similar approach, leads to an expression for the PS 
effective Q, QPS,eff, in terms of the effective Q values for P and S, QP,eff and QS,eff: 



Bale and Stewart 

6 CREWES Research Report � Volume 14 (2002)  

  
, , ,

PS SP

PS eff P eff S eff

T TT
Q Q Q

= + , (19) 

 PS P ST T T≡ + , 

where TP and TS here are one-way P and S times.  Alternatively, the effective Q for PS 
data can be given in terms of average vertical P and S-wave velocities, VP and VS, as 
follows: 
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and VPS is the usual definition of average PS velocity, which relates vertical two-way 
time to depth for a PS wave, and governs post-stack migration (Harrison and Stewart, 
1993).   

In Appendix B we also derive a Dix-type inversion for interval QS:  
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where NSNPN vv ,,=γ  and the one-way shear interval time NSt ,  may be obtained from: 
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and NPQ ,  can be obtained by a similar inversion applied to the PP data. We use the 
superscript (N) to denote effective quantities, as defined above, for N layers.   

Equation (21) could be used to determine interval values of shear-wave Q, given good 
estimates of interval velocities and effective Q values for PP and PS modes.  Thus it 
provides the possibility of estimating S-wave Q, using any existing surface seismic 
methods for Q estimation, from only PP and PS data. 

Effect of the source wavelet 

In order to determine actual resolution in the presence of attenuation, the initial 
wavelet must also be taken into account.  If the wavelet is assumed to be given by the 
same function of time for both PP and PS wavefields, then this leads to higher resolution 
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for the PS case, when both wavefields are transformed to the same vertical coordinate 
axis, since the wavelet is compressed by the ratio VP/VS. 

Deffenbaugh et al. (2000) considered the situation where QS < QP and an initial 
wavelet of period ∆T0 is assumed.  For this case they predict a �crossover depth�, zc, 
where the resolutions are equivalent in the depth domain.  The expression for crossover 
depth they give is: 

 
SP

SP
PSc QQ

VV
QQTz

−
−

∆= 0  (22) 

Note that when PS QQ ≥  this equation predicts infinite or negative values of zc, which 
is interpreted to mean that the PS resolution always remains superior to the PP resolution 
at all depths.  It may also be remarked that if we assume a delta function as the wavelet 
(for which )00 =∆T , the equation appears to predict crossover at zero depth.  In fact, 
based upon the previous comparison of PP and PS Q filter responses (equations (17) and 
(18)), the correct interpretation is that whichever mode has the highest Q value also has 
the highest resolution in depth, and no crossover occurs. 

MODELLED Q RESPONSES 
Vertical incidence Q responses are computed using a 1-D plane-wave modelling 

program written in Matlab, based on equations (6)-(8). One-way constant Q attenuation 
for layered media is modelled for both P waves and S waves, and are then combined to 
compute the PP, PS and SS responses.  The model used (see Table 1) is homogeneous, 
with events generated corresponding to a reflector at 2100m depth. There are overall 
differences in the amplitude levels of the impulse responses for the different modes (e.g. 
the amplitude ratio of impulse responses for PP and PS modes is given by QPVP/QPSVPS.  
For an explanation of this, see Appendix C).  However, the ratio of the 2nd and 3rd event 
peak heights to the 1st can be seen to be independent of mode.   If we consider attenuation 
to be a measure of how quickly amplitude decays relative to some reference depth, then 
this implies that the impulse responses show the same attenuation for PP, PS and SS 
modes.   After normalizing amplitudes, impulse responses for all three modes (Figure 1) 
are identical in depth. 

Table 1:  Homogeneous model: PP, PS and SS events are modelled corresponding to unit 
amplitude reflection at 2100m depth. 

 

The modelling is next performed starting with a 20 Hz Ricker wavelet as input (Figure 
2).  Time domain responses are shown in Figure 3.  To better compare resolution and 
dispersion, the events at 2100 m depth are normalized to a peak amplitude of 1, and 
plotted together as a function of depth (Figure 4).  The initial Ricker wavelet is identical 
in PP, PS and SS time, so that after conversion to depth, PS has a resolution advantage 

n ∆z VP VS QP QS 
1 2100 2100 700 50 50 
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before attenuation. In this case, where QS=QP, the advantage is retained after 
propagation, as seen in Figure 4(a). 

It is instructive to compare these results in both temporal frequency and wavenumber 
domains.  Figure 5 demonstrates how the PP and PS spectra arise from the combination 
of the initial wavelet spectrum and the Q-attenuation spectrum for the reflector at 2100 m 
depth (of course, Q-attenuation spectra are depth-dependent).  While the wavelet 
spectrum is identical in both cases, the PS mode attenuation spectrum decays much more 
quickly as a function of frequency than PP. Compare these with Figure 6, which shows 
the same spectra, but now plotted as functions of PP and PS vertical wavenumbers.  Now 
the attenuation spectrum (green curves) are seen to be identical functions of wavenumber 
for PP and PS, as predicted from equation (9).  However, the initial wavelet spectrum is 
stretched in PS wavenumber relative to PP wavenumber. 

(a)  (b)  

FIG 1. PP (blue), PS (magenta) and SS (red) impulse responses for the reflector at depth 2100m. 
The responses are displayed in depth and the Q absorption is computed: (a) using attenuation 
term only, giving a zero-phase response, and; (b) using both attenuation and dispersion terms, 
giving a minimum phase response.  All of the responses have been normalized according to the 
maximum amplitude of the attenuation response (a) for each mode.  Note that pulse shapes are 
identical for PP, PS and SS cases, but there are differences in onset time, due to the cut off 
frequency. 

The modelling was performed using QS values 40, 30 and 20.  The results for QS=30 
and the reflector at 2100 m depth are shown in Figure 7, plotted in depth.  These should 
be compared with the results in Figure 4 for the QS=50 case.  The predicted crossover 
behaviour occurs, such that the PS resolution appears to be similar to PP for the case QS 
=30.  The period for the Ricker wavelet is computed from ( )domfT π20 =  (Sheriff and 
Geldart, 1995), using fdom = 20 Hz, to give T0 = 22.5ms. Inverting equation (21) to find QS 
corresponding to 2100, we get QS = 28.6, close to the value 30, where near equivalent 
resolution is observed.  Thus, there appears to be good agreement with Deffenbaugh et 
al.�s (2000) theory.  It should be noted however that: amplitude attenuation is much 
stronger for PS and SS than for PP, and; that the dispersion effects for PS and SS are 
more pronounced than for PP, as expected for the lower S-wave Q value. 
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FIG. 2. Amplitude spectrum, 20 Hz Ricker wavelet used in modeling. 

 

 

FIG. 3.  Time domain seismograms for PP, PS and SS modes for model of Table 1. 
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(a)  (b)  

FIG 4. Depth domain seismograms for PP, PS and SS responses at 2100 metre reflector of 
model in Table 1. A 20 Hz Ricker wavelet is used and the Q absorption effect is computed: (a) 
using only the attenuation terms, and; (b) using both attenuation and dispersion terms.  Note the 
resolution advantage of PS and SS, when QS=QP. 

 (a)    (b)  

FIG 5. Temporal frequency amplitude spectra in dB for (a) PP and (b) PS event at 2100 metres 
depth.  The blue curve is the initial Ricker wavelet spectrum, identical for both cases.  The green 
line is the spectrum of the Q filter for that depth.  The red curve shows the resulting spectrum of 
the pulse at depth.  It is the product of the blue and green spectra. The PS event shows both an 
amplitude drop, and a lower peak frequency relative to PP.  

Finally, we model the case of constant QP= QS but now with a very low near-surface 
shear velocity, using the parameters in Table 2.  Reflections are generated at depths of 
400 and 800 metres, though the change in velocity occurs at 500 metres depth, such that 
the first reflection lies entirely within the low velocity layer and the second within the 
high velocity layer.  The model is depicted in Figure 8.  The results, plotted in depth in 
Figure 9, show a higher resolution for the shear modes in the top low velocity layer, but 
the reverse in the deeper high velocity layer. The explanation for this effect is that, while 
the velocities and Q values in all the layers above the reflector govern the overall 
attenuation (by considering equations 4 and 20), the conversion to depth is based purely 
on the local interval velocity.  The wavelet compression is much greater for a slow layer 
than for a fast layer, and the argument based upon wavenumbers for the homogeneous 
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case above no longer holds true.  The wavenumber spectra for the two reflections are 
shown in Figures 10 and 11. 

Table 2:  Layered model, with low near-surface shear velocity. 

 

 

(a)  (b)  

FIG 6. Vertical wavenumber amplitude spectra in dB for (a) PP and (b) PS event at 2100 metres 
depth.  The blue curve is the initial Ricker wavelet spectrum, which has a higher wavenumber 
band for the PS case.  The green curve is the spectrum of the Q filter, which is now seen to be 
invariant in wavenumber.  The red curve, which is the product of the blue and green spectra, 
shows the resulting spectrum of the pulse at depth.  The PS event is seen to have a higher peak 
wavenumber than PP, but lower amplitude. 

(a)     (b)  

FIG 7. Depth domain seismograms for PP, PS and SS responses at 2100 metre reflector of 
model in Table 1, for QS=30, QP=50.  The Q absorption is computed: (a) using only the attenuation 
terms, and; (b) using both attenuation and dispersion terms.  This shows the resolution 
�crossover� of PP, PS and SS, for a 20Hz Ricker input. We also see significant differences in 
dispersion. 

N ∆z VP VS QP QS 
1 500 1500 200 50 50 
2 700 2000 1000 50 50 
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FIG 8. Velocity model for variable VP/VS model.  Artificial reflections are generated at positions 
indicated. 

 

 (a)   (b)  

FIG 9. Depth domain seismograms for PP, PS and SS responses to a 20Hz Ricker wavelet, for 
500 and 800 metre reflectors of model in Table 2.  The Q absorption is computed: (a) using only 
the attenuation terms, and; (b) using both attenuation and dispersion terms.  The low velocity 
layer has a significant impact on S-wave resolution at depth. 
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 (a)  (b)  

FIG 10. Vertical wavenumber amplitude spectra in dB for (a) PP and (b) PS event at 400 metres 
depth.  As in Figure 6, the PS wavenumber spectrum benefits form the broader bandwidth of the 
wavelet in that domain, ensuring PS resolution remains higher than PP. 

 

(a)  (b)  

FIG 11. Vertical wavenumber amplitude spectra in dB for (a) PP and (b) PS event at 800 metres 
depth.  The mapping between frequency and wavenumber is determined by the shear velocity in 
the second layer, and is no longer sufficient to compensate for the increased number of cycles in 
the 200 m/sec shallow shear-velocity layer.  The result is that PS resolution is marginally inferior 
to PP resolution. 

FIELD DATA EXAMPLE 
Consider Figure 12, which shows a comparison of PP and PS migrated stacks from a 

2-D high-resolution 3-C seismic survey at the Pikes Peak heavy oil field located east of 
Lloydminster, Alberta/Saskatchewan.  A review of the acquisition and processing may be 
found in Hoffe et al. (2000). 

The time axis for the PS section has been compressed by a factor of 2 relative to the 
PP section, which was found to approximately align corresponding events.  This also 
enables a crude initial comparison of PP and PS resolution on the migrated data.  Overall, 
the data quality is considered to be good.  However, it is apparent that in general the PS 
resolution is considerably poorer than the PP resolution.  For example consider the top of 
the Waseca formation at about 550 ms PP time (1100 PS time). 
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Analysis of the raw field data (Figure 13) indicates the following: the radial spectrum 
is deficient in low wavenumbers compared to the vertical spectrum; and the radial 
spectrum decays rapidly after 20 Hz, whereas the PP spectrum has a slower decay after 
the corresponding frequency of 40 Hz.  The first effect is attributable to the initial source 
spectrum, which is equal in temporal frequency for both PP and PS modes, such that the 
low-end roll-off covers a wider range of PS wavenumbers.  The second effect may well 
indicate a lower value of Q for shear waves than for compressional waves, or the effect of 
near-surface velocity ratios. 

DISCUSSION AND CONCLUSIONS 
The effects of Q absorption may be broadly summarized: 

• Amplitude decays with propagation distance 

• The seismic pulse broadens, due to differential attenuation of higher versus lower 
frequencies  

• There is minimum-phase dispersion, consistent with the demands of causality 

The intuitive argument that S-waves travelling at a slower velocity than P-waves have 
more oscillations and therefore more attenuation is basically correct, but can be 
misleading.  Ultimately, we wish to compare resolution in depth rather than time, or at 
least compare after converting from PS to PP time.  Considering the Q filter on its own, 
we find that the attenuation effect in depth is equal for PP and PS if they have the same Q 
value.  However, as the source wavelet is a function of time rather than depth, it 
corresponds to higher wavenumbers for PS than for PP.  In terms of resolution, this 
favours the S-waves.  However, the missing low frequencies have a detrimental effect 
upon PS amplitudes.  Figures 2 and 3 help us to understand these two effects.  The 
resulting PS spectrum of the event has a higher peak wavenumber than PP, consistent 
with the observation of higher resolution in the depth domain.  However, there is less 
overlap of the initial wavelet spectrum and attenuation spectrum, leading to overall 
weaker amplitudes.  If the source wavelet is devoid of low-end frequencies, what remains 
is then subject to high absorption, diminishing the amplitude.  The problem then becomes 
one of signal-to-noise ratio, rather than resolution. 

For cases where S-wave Q is less than P-wave Q, modelling confirms the predicted 
crossover in resolution (Deffenbaugh et al., 2000). Furthermore, in this case the 
dispersion effect is stronger for PS than for PP data, which may be important to consider 
when matching events for VP/VS computation.  When QP=50, and QS = 20, our modelling 
showed an apparent difference in depth of 50 metres, caused by dispersion. A 
consequence is that velocities determined from comparing PS and PP event times are 
likely to be affected by differences between P-wave and S-wave Q. 

Perhaps the most significant finding is that a very low shear-wave velocity in the near 
surface may adversely affect vertical resolution at depth, even if the value of QS is not 
low.  This situation may well be common.  We suggest that it may be fruitful to address 
Q compensation of the near surface in processing to improve resolution at the reservoir. 
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(a)  

(b)  

FIG 12. The Pikes Peak 3C-2D line, showing a comparison of migrated PP (a) and PS (b) stacks.  
The PS stack has been displayed with a compression of 2 on the time axis, which approximately 
aligns events with the PP section. 
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FIG 13. Comparison of prestack shot gathers for the vertical component (a) and radial component 
(b). The highlighted boxes indicate some P-wave and PS-wave reflection events from 
approximately the same depth.  The bandwidth of the data in the box is shown to the right.  
Taking 20dB as a cut-off level, we have a signal bandwidth of 8-75Hz on the P-wave data, but 
only 8-25 Hz on the PS wave, corresponding to 16-50Hz after frequency axis stretch. 
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APPENDIX A 

DISPERSION EQUATION FOR CONSTANT-Q ATTENUATION 

Futterman (1962) used an argument based on causality to show that the attenuation 
and dispersion terms associated with constant-Q behaviour are related to each other 
through the Kramers-Kronig relations.  His reasoning is too involved to repeat here, but 
in essence the argument used is that causality requires the complex wavenumber to be an 
analytic function in the upper-half complex plane. This allows use of Cauchy�s residue 
theorem to the complex index of refraction (simply related to the wavenumber) to 
determine a relationship between its real and imaginary parts. The resulting Kramer-
Kronig relations are given by the following Hilbert transforms (using the notation of Aki 
and Richards, 1980): 
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where the Hilbert transform, H, with respect to ω, is given by: 
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where )(ωc is the phase velocity, ∞c is the limiting phase velocity at the maximum 
desired frequency, such that no signal can arrive at any faster velocity, ( )ωα  is the 
attenuation coefficient, and P indicates taking Cauchy�s principal value to remove the 
singularity when evaluating the integral. 

APPENDIX B 

LAYERED MEDIUM Q ATTENUATION 

In the case of a layered medium, for vertical wave propagation, the Q filter described 
in equation (3) may be used recursively for each layer as follows: 
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where 1−−≡∆ nnn zzz  is the thickness of layer n, cn is the phase velocity at ∞ω  and Qn is 
the Q value in layer n, and ( ) ( )nnn cQ2ωωα ≡ .  The recursion may be expanded to give 
the following for the attenuated wavefield at depth zN: 
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Using the fact that the Hilbert transform is a linear operator to switch the order of the 
summation and H, we get: 
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By inspection (B3) has the same form as a single-layer Q filter, where the effective Q 
value, Qeff, is defined by: 
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Substitution into (B1) gives:  
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An integral expression for effective Q, equivalent to (B3), is given in Bickel and 
Natarajan (1985), equation (33). 

PS effective Q 
Using a similar approach as above, based upon the P- and S-wave propagation 

operators for each layer gives the following equation for effective Q in the PS case: 
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This can also be expressed in terms of the effective Q values for P and S: 
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where TP and TS here are one-way P and S times.  This is equation (19) in the text. 

Dix-type inversion for QS 

An inversion formula to determine the interval S-wave Q-value from the effective PS 
Q-values and interval P-wave Q-value can also be obtained.  We use the superscript (N) 
to denote effective quantities, as defined above, for N layers.  Using equation (B6) we 
get: 
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Rearranging, we obtain: 
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where NSNPN vv ,,=γ  and the one-way shear interval time NSt ,  may be obtained from: 
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and NPQ ,  can be obtained by a similar inversion applied to the PP data.  Equation (B9) is 
equation (21) in the text. 

APPENDIX C 

SCALING RULES FOR PP-, PS- AND SS-MODE Q FILTERS 
We consider only the non-dispersed form of the Q attenuation formula.  For two-way 

propagation of P-waves to depth z, this is given by: 
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The time domain pulse is given by the inverse Fourier transform: 
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The peak amplitude occurs when PVzt 2= , in which case we have: 
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A similar analysis for PS and SS gives: 
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Combining these equations gives the following scaling rules: 

PS over PP: 
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SS over PP: 
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where the definitions of VPS and QPS are given in equation (7) . 

From equations (C5) and (C6) we see that there are overall amplitude differences 
introduced by the Q filters for different modes, but that they are depth independent.  If we 
regard attenuation as a measure of peak amplitude decay at depth z, relative to some 
reference depth z0, then the Q-filters for different modes have the same attenuation.  
However, as discussed in the text, this no longer remains so when interaction with the 
wavelet is considered.  In the case when QS = QP, the scaling is by the velocity ratios, or 
equivalently the inverse-time ratios. 


