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S* � shear energy from a P-wave source 

P. F. Daley 

ABSTRACT 

The existence of an apparent source of VS  waves propagating in the underlying 
homogeneous isotropic medium resulting from an explosive P wave point source in the 
immediate vicinity of an interface, most often the earth�s surface, has been shown in the 
literature to be a mathematical, numerical, and physical reality. This arrival, when 
observed on synthetic sections computed using the hybrid finite integral transform � 
finite-difference method, was designated as the *S  arrival. It had no true geometrical ray 
path, but rather an apparent path of energy transport and was termed, appropriately, a 
non-geometrical or inhomogeneous arrival. Its theoretical existence was subsequently 
confirmed by analytical methods using a zero order saddle point approximation to the 
Sommerfeld integral. These first analytical methods made a simplifying assumption that 
the saddle point was constrained to be on the real axis in the complex slowness (p) plane, 
eventhough it was known at the time that this was an idealized solution. However, the 
numerical results from this simplified solution showed reasonably good agreement with 
the purely numerical results, and as is often the case, the problem was not pursued 
further. 

In the twenty years that have passed since this original investigation significant 
advances in data acquisition have been made and interest in this shear wave generation 
phenomenon has been shown. This has prompted a more mathematically intensive study 
of the problem with the idea that some of the original conjectures regarding the properties 
of this type of arrival be investigated in the light of a more comprehensive mathematical 
analysis. The investigation presented here of the *S  arrival indicates other instances 
where the zero-order asymptotic expansion, which is dependent on plane-wave reflection 
and transmission coefficients, to describe the particle displacement of body waves, is 
inadequate. 

INTRODUCTION 
When numerically considering Lamb�s problem using a hybrid finite-difference � 

finite integral transform method of solution (Aleekseev and Mikhailenko, 1977, and Hron 
and Mikhailenko, 1981), an arrival of significant amplitude was observed when a point P 
source was located close to the free interface in an isotropic homogeneous halfspace. No 
geometrical ray path, based on a physical analysis, could be found to correspond to the 
transport of shear-wave energy from the source to a line of receivers buried in the 
isotropic halfspace. However, a path from an apparent source point was determined from 
traveltime measurements. This non-geometrical arrival was called the *S  arrival and 
from the numerical experiments using the computed synthetics, the following attributes 
of this disturbance were determined (Daley and Hron, 1983(a), (paper 1)): 
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FIG. 1: Given a point source of P waves at O, the *S  arrival appears to emanate from the 
point *O . The region of existence of the *S  arrival in the approximate saddle point case is 
confined to the region exterior to the conical surface with its apex at *O  and at an angle 

( )1* 2sin β α−Θ =  with the vertical axis. The angle ( )1sinχ β α−=  defines the distinct ray 

while 2χ π=  corresponds to the surface ray. 

(1). Its amplitude increased exponentially with decreasing source depth. 

(2). In the vicinity of the free surface, the amplitude of the *S  increases in an almost 
linear manner with increasing receiver depth. 

(3). The existence of the *S  arrival is restricted to that part of the elastic halfspace, which 
includes the outer domain of a conical surface, symmetric about the vertical axis passing 
through the source. The angle *Θ satisfies the relation ( )* 12sin β α−Θ =  where α  and 

β  are, respectively, the phase velocities of the compressional ( )P  and shear ( )VS  waves 
in the halfspace. [Figure 1 of this report.] 

(4). The *S  arrival appears to originate at the vertex *O  of the above-mentioned conical 
surface and propagates with the velocity of the shear wave. 

(5). The particle motion of the *S  disturbance is linearly polarized and at right angles to 
the direction of propagation. 

Chapman (1985) addressed a canonical problem and obtained similar results. 
References to earlier reports of certain aspects of this phenomenon may also be found in 
paper 1, notably Lapwood (1949) and Burridge et al. (1964). Subsequent independent 
numerical experiments using purely finite-difference methods (Gutowski et al., 1984) 
confirmed the findings of Hron and Mikhailenko, (1981). The existence of the *S wave 
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was shown experimentally with physical modelling experiments performed by Kim and 
Behrens (1985,1986). Other confirmations of the results were given by Fertig (1984), 
Fertig and Psencik (1985), and Edelmann (1985). 

As the disturbance was thought to be a contribution of that part of the Sommerfeld 
integral describing the reflected VPS  wavefield from a free interface not usually 
considered in high-frequency approximations to the integral the contour integral in 
question was re-examined in the context of the physical situation in which the arrival 
existed. Another saddle point defining an evanescent arrival type was found to be the 
contributing factor. As previously mentioned these arrival types are not usually included 
in the high frequency analysis of the Sommerfeld integral because in most cases they 
make no or insignificant contributions to the total computed wavefield. 

In this report, the saddle point approximation described in paper 1 will be re-examined 
and a more mathematically correct determination of the saddle point and its contribution 
to the total Sommerfeld integral investigated. Some of the points, in particular, 3 and 4, 
given above regarding the properties of the *S  arrival will then be re-evaluated in light of 
the more mathematically correct solution. For completeness the solution for the VPS  
reflected arrival will be discussed so as to provide a context, specifically regarding the 
integration contour, within which to approach the solution method for the *S  arrival. 
Only the vertical components of the disturbance will be developed in detail. The 
horizontal component may then be inferred from the vertical component solution for both 
the reflected VPS  and non-geometrical *S  arrivals. The zero order saddle point method 
will be employed in this discussion. A more rigorous, higher order treatment may be 
pursued at a later time as it may prove useful in dealing with further questions raised 
here. 

THEORETICAL BACKGROUND 
Consider a homogeneous isotropic halfspace with compressional and shear wave 

velocities, α  and β  respectively, and density ρ . A point source of P waves is assumed 
to be located a distance h below the vacuum/solid boundary and a receiver situated at 
( ),r z  in the cylindrical coordinate system in which the problem is being considered 
(Figure 2). The elastodynamic equations in this medium type are 

 
( ) ( ) ( )

2

2 2
t

ρ λ µ µ∂ − + ∇ ∇ ⋅ + ∇ × ∇ × =  ∂
u u u f

 (1) 

The particle displacement, ( ) ( ) ( ), , , , , , ,r zr z t u r z t u r z t=   u  may written in terms of P  

and VS  potentials, φ and ψ  as  

 ( )0,0,φ ψ= ∇ + ∇×∇×u  (2) 

with the related potentials, Φ and Ψ , of the source term ( ), ,x z tf  being given by  
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 ( ) ( ) ( ) ( ) ( ) ( ), , 0,0, , , 0 .x z t A t x y z hδ δ δ= ∇Φ + ∇×∇× Ψ Φ = − Ψ =f  (3) 

In the above a P  type source has been assumed so that any possible VS  source 
contribution due to Ψ  is zero. 

 

FIG. 2. A schematic of the geometry of the problem being considered. A point source of P waves 
is located at O in an isotropic homogeneous halfspace a distance h below the free surface. The 
source depth is assumed to be of the order of less than half a wavelength measured with respect 
to the predominant frequency of the source pulse. A line of receivers is located at some depth z 
below the vacuum/solid interface. The apparent location of a source of shear wave energy is at 

*O on the surface. 

The reflected VPS  displacement potential, defined above, may be written exactly as 

 
( ) ( ) ( ) ( ) ( )0

0

1, , expPS
p dpr z A R p J pr i h z

i p
βψ ω ω ω ω η ξ

ω α η

∞  
= +    

 
∫

 (4) 
(Cerveny and Ravindra, 1970 and Aki and Richards, 1980) where the quantities requiring 
definition are the radicals η  and ξ , which are related to the P  and VS  velocities and 
propagation angles, Pθ  and Svθ  in the following manner 

 
( ) ( )1/ 22 2 cos , Im 0Pp θη α η

α
−= − = ≥

 (5) 
and 

 ( ) ( )1/ 22 2 cos , Im 0 .Svp θξ β ξ
β

−= − = ≥  (6) 

The free surface VPS  displacement reflection coefficient as derived in Aki and Richards, 
(1980) with η  and ξ  introduced is 
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( ) ( )
( )

2 2

22 2 4 2

4 1 2

1 2 4
PS

p p
R p

p p

αβ η β

β β ηξ

−
=

− +
 (7) 

where all quantities have been previously defined. It should be noted that the 
denominator of equation (7) is the Rayleigh function (Aki and Richards, 1980), ( )0J κ  is 

the zero order Bessel function and ( )A ω  is a frequency dependent quantity, which may 
contain the Fourier time transform of the source wavelet. 

The reflected VPS  horizontal (radial) component of displacement may, utilizing the 
definition of the VS  potential in equation (1), be written as 

 
( ) ( )2 , ,

, ,r

r z
u r z

r z
ψ ω

ω
∂

=
∂ ∂  (8) 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]2
1

0

1
, , exp .r PS

p dp
u r z A R p i p J pr i h z

i p
βω ω ω ξ ω ω η ξ

ω α η

∞

= − + 
 
 
∫  (9) 

and in the same manner, the reflected VPS  vertical component of displacement has the 
form 

 
( ) ( ), ,1, ,z

r z
u r z r

r r r
ψ ω

ω
∂ ∂=  ∂ ∂   (10) 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]2 2
0

0

1
, , exp .z PS

p dp
u r z A R p p J pr i h z

i p
βω ω ω ω ω η ξ

ω α η

∞

= − + 
 
 
∫  (11) 

A zero order saddle point solution will be presented only for the vertical displacement 
component as the expression for the horizontal component may be obtained quite easily 
from the vertical problem solution. Replacing the Bessel function ( )0J κ  by Hankel 

function ( )(1)
0H κ  in equation (11) (Abramowitz and Stegun, 1980) yields 

 
( ) ( ) ( ) ( ) ( )

2
(1)
0, , exp

2z PS
i p dpu r z A R p H pr i h zω βω ω ω ω η ξ

α η

∞

−∞

= +  ∫
 (12) 

Introducing the asymptotic expansion for large argument for ( )(1)
0H κ  and retaining only 

the leading term results in 

 
( ) ( ) ( ) ( )

3/ 2
/ 4, , exp

2
i

z PS
i p dpu r z A e R p i pr h z

r
πβ ωω ω ω η ξ

α π η

∞
−

−∞

= + +  ∫
 (13) 

The integral along the real axis, ( )p−∞ < < ∞ , can be replaced by one more suitable for 
a saddle point approximation to the integral. Also, the branch cuts corresponding to the 
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branch points at 1p α −= ±  and 1p β −= ±  may be moved off the real axis into the first and 
third quadrants of the complex p-plane. Using standard closed contour methods  

 

FIG. 3. Integration contour used in obtaining zero order saddle point solutions for the reflected 

VPS  and non-geometrical *S  arrivals. The saddle point contours have been parameterized in 
terms of a real variable defined in the text. The branch cuts have been moved off the real axis so 
that they lie in the first quadrant of the complex p-plane using a similar parameterization as for the 
branch points. The original integral has been along the real p axis ( )p−∞ < < ∞  transformed 

into its constituent arrivals. The Rayleigh pole is indicated as PR  but its contribution will not be 
considered here (see Aki and Richards, 1980) nor will the branch cut integrals. The saddle point 
that produces the PS reflected arrival lies on the real p axis while that for the *S  arrival lies in the 
first quadrant of the complex p-plane. 

 
0 * R Residues

∞

−∞

Ω = + Ω + Ω + Ω =∑∫
 (14) 

where as indicated in Figure (3) 

∞

−∞
∫  - original contour along the real p axis, 

0Ω - geometrical VPS  reflected arrival saddle point contribution to the integral, 
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*Ω - non-geometrical (inhomogeneous) *S  arrival saddle point contour, 

RΩ - integral around the semicircle of radius R in the upper half of the p-plane which as a 
consequence of the radiation conditions imposed tends to zero as R → ∞ , and 

Residues∑  - the residues contained within the closed contour Ω  which is the Rayleigh 
pole contribution (Aki and Richards, 1980). 

The only branch points which need to be considered for this contour choice are those 
at 1p α −=  and 1p β −=  as those in the third quadrant in the complex p-plane are not 
included within the integration contour closed in the upper half of the p-plane as they are 
bypassed by the saddle point contours. If the problem had been formulated in a manner 
such that ( )(2)

0H κ  was needed to be introduced (complex conjugate case) they would be 
have to be considered rather than those in the first quadrant, as it would be required that 
the contour be closed in the lower half of the p-plane. The saddle point contour for the *S  
arrival is isolated in Figure 4. 

REFLECTED VPS  ARRIVAL 

A parameterization of the saddle point contour often used in these types of problems, y 
being a real quantity such that 0y =  corresponds to 0p p= , is 

 ( ) ( )1/ 2 1/ 22 2 2 2 / 4
0 ,ip p y e yπα α− − −− = − − − ∞ < < ∞

 (15) 

or equivalently, with 0η  indicating the value of η  at the saddle point, 0p  

 / 4
0 , .iy e yπη η −= − − ∞ < < ∞  (16) 

The corresponding mapping of the branch cut from the real p  axis into the first quadrant 
in the complex p -plane and originating at 1p α −=  is accomplished through the variable 
change 

 ( )1/ 22 2 / 4 , 0ip y e yπα − − = < < ∞ ,  (17) 

y again is a real valued quantity and in an analogous manner to the saddle point 
parameterization, 0y =  corresponds to 1p α −= . 

From equation (15) the following relation used in the change of variable from p  to y is 
obtained 



Daley 

8 CREWES Research Report � Volume 14 (2002)  

 / 4 / 4 .i ip dp dpdy e e
dy p

π πη
η

− − 
= = 

 
 (18) 

The equation providing the saddle point definition for the reflected VPS  arrival is the 
phase function 

 ( ), ,r z p r p h zτ η ξ= + + . (19) 

The saddle point location is obtained, with 0p  being real and corresponding to the 

geometrical reflected VPS  arrival ( )1
00 p pα α −≤ < = , from the derivative of the phase 

function τ  with respect to p  

 
0 0

0
p p p p

d h zr p
dp
τ

η ξ= =

  
= − + =  

  
 (20) 

This apparently fairly simple equation cannot be solved analytically and numerical 
methods must be used. The solution of this equation for a real value of p yields the saddle 
point corresponding to the geometrical VPS  reflected arrival. For this case the value of 

0p  is located on the real axis interval, ( )1
00 p α −≤ < . As in any saddle point 

approximation the validity of the solution within the region in which it is defined should 
be investigated before implementation. For example, as 1

0p α −→ , r → ∞ . This is a 
problematic area as it is a special case of the saddle point approximation where the saddle 
point is in the vicinity of a branch point. Higher order saddle point approximations to 
integrals in this region are usually in the form of parabolic cylinder functions or retaining 
more terms in the asymptotic expansion of the integrand (Felsen and Marcuvitz, 1973). 

This is also the case at the other extreme of the interval of the existence of the saddle 
point, near ( )0 0 0p r≈ ≈ . In most instances the zero order saddle point is sufficiently 
accurate in this offset range even though the asymptotic expansion of the Hankel 
function, ( )(1)

0H κ , for large values of κ  is used in this solution method. However, if h is 
small, of the order of less than a wavelength, the plane wave approximation is not valid 
as the curvature of the wavefront from a point source of P waves must be taken into 
consideration.(Daley and Hron, 1987 and confirmed by Psensik, 1988). Such is the case 
here, as this problem has been addressed in the above two papers it will not be repeated 
as it is fairly mathematically intensive and not particularly useful in the present 
discussion. However, the zero order saddle point approximation is included for 
completeness, but more specifically to introduce the saddle point integration contour 
parameterization employed. 

Expanding the exponential term ( ), ,r z pτ  in a Taylor series about 0p p= , ( )0y = , 
results in the following 
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 ( ) ( )
0

22
2

0 2

1

2
, , , , .

p p

d dpr z p r z p y
dp dy

ττ τ
=

  
≈ + +  

   
!  (21) 

where the saddle point condition that 0d dpτ =  at 0p p=  has been used to simplify the 
above expansion. For the problem under consideration 2 2dpτ∂  does not become zero 
within the range of applicability so that higher order terms need not be introduced in 
equation (21). In the case of the geometrical reflected VPS  arrival, ( )0, ,r z pτ  is the 
reflected travel time from the source to the free interface and then to the receiver. As 0p  
is real it follows that ( )0, ,r z pτ  is also real. Using the expressions derived above the zero 
order saddle point approximation for the vertical component of particle displacement of 
the reflected VPS  arrival is obtained in the standard manner (Felsen and Marcuvitz, 
1973). 

 ( ) ( ) ( ) / 2 2 20
0 0, , exp 2

2
PSVii

z PS
pu r z A R p e e a y dy
r

ωτπωβω ω
α π

∞
−

−∞

 = − − ∫  (22) 

where 

 ( )0, ,
VPS r z pτ τ=   (23) 

with 2
0a  defined as 

 
2 2

2 20 0
0 02 3 2 3 2 2

0 0 0 0

h za a
p p
η ηω ω

α η β ξ
     

= + =     
     

"  (24) 

The variables subscripted with "0"  indicate that they are to be evaluated at 0p . This 
results in 

 ( ) ( ) ( )00 0

0 0

, , .PSViPS
z

R pp pu r z A e
r a

ωτβω ω
α η

=
"

 (25) 

From this equation for the vertical component of the reflected VPS  particle displacement 
at a free surface, the horizontal component may be obtained in a similar manner from 
equation (9) and is given b 

 ( ) ( ) ( )00 0

0 0

, , .PSViPS
r

R ppu r z A e
r a

ωτξβω ω
α η

=
"

 (26) 

The variation of the ray parameter for the reflected VPS  versus offset is shown in 
Figure 5. 
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FIG. 5. The location of the real saddle point, 0p , corresponding to the VPS  reflected arrival from 
the free surface. The source is located at a depth of 0.125 WL in an isotropic homogeneous 
halfspace with compressional and shear wave velocities 1.0 WL Tα =  and 

0.5 WL Tβ = respectively. A line of buried receivers is at 3.0 WL below the free interface. The 

progression of 0p  towards the branch point at 1α − is quite rapid so that from an offset of about 
6.0 WL onwards the zero order saddle point approximation is a questionable solution due to the 
proximity of the saddle point 0p  and branch point 1pα α −= . 
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S* ARRIVAL 
There is another solution of equation (16) which lies in the semi-infinite strip 

( )1 1
* *: 0p p p p iα βα β− −= < < = < < ∞  and produces the non-geometrical or 

inhomogeneous arrival, which has been designated as the *S  arrival in the literature 
(Mikhailenko and Hron, 1981). This event is associated with a point P wave source 
located close to the free surface. In a halfspace the expected arrivals for a buried receiver 
would be, in addition to the Rayleigh wave, the direct P and the reflected PP and VPS  
arrivals. However, numerical experiments (Hron and Mikhailenko, 1981) have shown 
that if the P wave source is of the order of less than half a wavelength1 from the 
vacuum/solid interface, the saddle point indicated above may make a significant 
contribution to the recorded disturbance. This has been extended to a P wave source at 
depth in the proximity of an interface of moderate to large changes in elastic parameters 
(Daley and Hron, 1983b). The vertical component of the *S  disturbance is given by the 
zero order saddle point solution of 

 ( ) ( ) ( ) ( )
3/ 2

/ 4

*

, , exp
2

i
z PS

p dpu r z A e R p i pr h z
r

πβ ωω ω ω η ξ
α π η

−

Ω

= − + +  ∫  (27) 

For this part of the contour the solution of the equation defining the saddle point, *p , 
requires 

 ( )
* *

* *0, : 0
p p p p

d h zr p p p p p i
dp α β
τ

η ξ= =

  
= − + = < < < < ∞  

  
 (28) 

and must also be obtained numerically. However in this instance, the quantity being 
solved for is complex, requiring a method for simultaneously solving for both the real 
and imaginary parts of * * *

R Ip p ip= + , with both *
Rp  and *

Ip  positive. Newton�s method 
(Press et al., 1997) is one possibility for accomplishing this. 

The parameterization of the saddle point contour used here is similar to that used for 
the geometrical reflected VPS , equation (15), and in terms of the real parameter y  may 
be written as 

 ( ) ( ) *
1/ 2 1/ 2 / 42 2 2 2

* ,i ip p y e yπ θβ β − +− −− = − − − ∞ < < ∞  (29) 

(Figure 4). Here, *p  is generally complex and will be written as *
*

ip e θ  or * * *
R Ip p i p= +  

with *θ  being the positive acute angle between the real p axis and a line drawn from the 
origin to the point *p  in the first quadrant of the complex p-plane. The quantities *

Rp  and 

*
Ip  are real and positive. 

                                                 
1 A wavelength (WL) which will be used as a measure of distance, for this problem is defined in terms of 
the P wave velocity in the halfspace, α , and the predominant frequency of the source wavelet, 0f , 

as 0fλ α= . The measure of time will be a period, (T), and defined as 01T f= . 
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FIG. 4. Location in the first quadrant of the complex p-plane of the saddle point *p  associated 

with the *S  arrival. The angle *θ  determined by the saddle point location defines an orthonormal 
transformation from the model (unprimed) coordinate system to the primed one in which the 
saddle point *p′  is real. 

The introduction of the angle *θ  into the expression for the contour parameterization 
has the effect of an orthonormal rotation of the p  plane into the ′p  plane, which is such 
that the real axis of the ′p  plane passes through the complex valued saddle point, *p , so 
that *p′  is a real quantity in the rotated Cartesian system. 

The branch cut originating at 1p β −=  is moved to the first quadrant through the variable 
change 

 ( )1/ 22 2 / 4 , 0ip y e yπβ − − = < < ∞   (30) 

where again y  is a real valued quantity and in an analogous manner to the saddle point 
parameterization, 0y =  corresponds to 1p β −= . All quantities subscripted with �*� will 
assumed to be evaluated at *p . 

From equation (29) the relationship 

 * */ 4 / 4i i i ip dp dpdy e e
dy p

π θ π θξ
ξ

− + − + 
= = 

 
 (31) 

is obtained, where as before, ( )1/ 22 2pξ β −= − . In a manner analogous to the reflected 

geometrical ray VPS  the exponential term, ( ), ,r z pτ , is expanded in a Taylor series. In 
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this instance it is about ( )* 0p p y= = , with ( ), ,r z pτ  as in the previous section being 
given by 

 ( ), ,r z p r p h zτ η ξ= + +  (32) 

Using equation (31), the truncated Taylor series, which again retains terms up to 2y , 
and using 2 2d dpτ  derived in the previous section the following expansion is obtained 

 ( ) ( )
22

2
2*

*

1

2
, , , , .

p p

d dpr z p r z p y
dp dy

ττ τ
=

  
≈ + +  

   
!  (33) 

Substituting quantities defined earlier into the expansion of the exponential and 
denoting that a parameter is evaluated at *p  with the subscript �*�, results in the term in 

2y  being given by 

 

*

*

2
22 *

* 2 3 2 3 2
* * *

2
22 *

* 2
*

2
* .

i

i

h za e
p

a e
p

a

θ

θ

ξω
α η β ξ

ξω

ω

   
= +   

   
 

=  
 

=

"

#

 (34) 

Implementing the expressions derived above the expression for the vertical component of 
particle displacement of the *S  disturbance due to the saddle point at *p p=  may then be 
written in the intermediate form 

 ( ) ( ) ( ) * 2 2* *
* *

*

, , exp 2
2

i
z PS

i pu r z A R p e a y dy
r

ωτβ ω ξω ω
α π η

∞

−∞

 = − ∫  (35) 

where the expression for the �travel time� term, ( )* *, ,r z pτ , is now a complex quantity 
consisting of the actual travel time of the disturbance, *τ , together with a term which 
introduces an exponential decay factor, *γ , whose damping effect is dependent upon the 
distance of the source from the free surface interface and the relative size of the 
imaginary part of *η . Analytic expressions for *τ  and *γ  may not be obtained as they are 
the result of the numerical solution of equation (27) for *p  substituted into equation (32) 
and the real and imaginary parts of ( )*, ,r z pτ  taken to yield these two values. The travel 
time and exponential decay factor are written as 
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( ) ( ) ( )* 0 * * * *

* *

, , , , , ,R Ir z p r z p i r z p
i

τ τ τ
τ γ

= +
= +

. (36) 

Continuing with the evaluation of the saddle point approximation solution in equation 
(35) results in the vertical component of particle displacement of the *S  arrival being 
given by 

 ( ) ( ) ( )
* *** *

* * *

, , PS i
z

R pp piu r z A e
r a

ωτ ωγβω ω
α η

−=
"

 (37) 

The corresponding horizontal displacement component of the *S  has the form 

 ( ) ( ) ( )
*** *

* *

, , PS i
r

R pi pu r z A e
r a

ωτ ωγβ ξω ω
α η

−=
"

. (38) 

These solutions will be discussed in more detail in the next two sections. 

COMPARISON OF SOLUTIONS 
The following quote from paper 1 will be discussed here: 

�The existence of the *S  arrival is restricted to that part of the elastic halfspace which 
includes the outer domain of a conical surface, symmetric about the vertical axis passing 
through the source. The angle *Θ  satisfies the relation ( )* 12sin β α−Θ =  where α  and 

β  are, respectively, the phase velocities of the compressional ( )P  and shear ( )VS  waves 
in the halfspace.� 

In the general case of the saddle point approximation for the *S arrival, discussed in 
this report, the real part of *p  is constrained to lie in the range 1 1

*pα β− −< < . This holds 
for the simplified case discussed in paper 1 with the exception that there, *p  was 
obtained as a result of the simplification of the saddle point approximation, which forced 
it to be real and thus lie on the real p axis in the range 1 1

*pα β− −< < . The delimiter " "<  
is used rather than " "≤  as " "<  indicates that the ordinary saddle point method used is 
not valid at (or near) the end points of the real axis range. The end points, 1α −  and 1β − , 
are both branch points. At these points alternative, more complex approximations to the 
Sommerfeld type integral are required for accurate results (Felsen and Marcuvitz, 1973). 

Given the phase function, which is to be expanded about the saddle point, as 

 ( ), ,r z p r p h zτ η ξ= + +  (39) 

with h  being the depth of the point P source below the free interface, z the depth of the 
receivers, r the offset or horizontal distance from the source to receiver, and the 
previously defined quantities 
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 ( ) ( )1/ 22 2 Im 0pη α η−= − ≥  (40) 

 ( ) ( )1/ 22 2 Im 0pξ β ξ−= − ≥ . (41) 

For h small the term exponential term ( ), ,i r z pe ωτ  was approximated in paper 1 as 

 ( ) [ ] ( )*exp , , exp expi r z p h i rp zωτ η ω ξ≈ − +       . (42) 

Here ( )1/ 22 2
* *pη α −= −  with the value of p at the *S  saddle point location, *p , obtained 

from the simplified equation 

 ( )
*

0
p p

d rp z
dp

ξ

=

+
=  (43)  

the solution being 

 
( )* 1/ 22 2

rp
r zβ

=
+

 (44) 

As all quantities in equation (44) are real, then as previously mentioned, the saddle 
point *p  is required to lie on the real p axis in the range 1 1

*pα β− −< < . The lower bound 
corresponds to  

 
2

1 sin

P

Pp
θ π

θ
α α =

= = . (45) 

It follows from Snell�s Law that 

 ( )* 1 *2sin 2β α χ−Θ = = . (46) 

Thus, according to this analysis, if the receiver line is located at a depth z, the first offset, 
Fr , at which the *S  arrival can be seen is 

 *tanFr z χ=  (47) 

The other limit for *p  is 1
*p β −=  resulting in the following condition being satisfied 

 
( )1/ 22 2

1 r

r z
=

+
. (48) 

This requires that r → ∞  which would be expected. 



Daley 

16 CREWES Research Report � Volume 14 (2002)  

 

FIG. 6. The real and imaginary parts of *p  and the absolute values of the real and imaginary 

parts of *η  plotted against the offset of the receivers at a depth of 3.0 WL. The plotting of the 

values is stopped when the quantity ( )* *

2 2 2
R Ip pδ α −= − −  has a zero crossing. After that point 

the saddle point derived does not satisfy radiation conditions leading to a non-physical arrival. 
This is because the only solution to the saddle point equation, apart from the geometrical 
reflected VPS  disturbance, only exists on a non-physical Riemann sheet. 

 

A comparison will now be made of the above and the solution for the saddle point 
location in the semi-infinite strip [ ] [ ]( )1 1

* *Re ;0 Imp pα β− −< < ≤ < ∞ . In this case, 

where the saddle point case is complex, the distinct ray, analogous to sin 2Pθ π=  in the 
instance previously considered, occurs when 

 ( ) ( )2 22
* * 0R Ip pδ α −= − + =  (49) 

It is at this point where the sign of the imaginary part of *η  changes leading to an 
unphysical radiation condition. As 0δ −→  
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 ( ) ( ) ( ) ( ) ( )1/ 2 1/ 2 1/ 2/ 4
0

lim 2 2 1i
R I R I R Ii p p e p p i p pπ

δ
η −

−
→

= − = = −  (50) 

Using numerical methods the algorithm at this point will attempt to locate a solution and 
most often will accomplish this. However, the solution will not satisfy the radiation 
condition as it is located on a non-physical Riemann sheet. 

Apart from the above, it is in this area where 

 
0

2

2 0
p p

d
dp

τ

=

=  (51) 

introducing a further complication as higher order terms in the Taylor series expansion of 
( ), ,r z pτ  must be calculated before an approximation to the saddle point integral can be 

obtained. 

The solution obtained in this report will now be compared with that computed in paper 
1 using a numerical example for this purpose. The P and VS  velocities in the halfspace 
are 1.0WL T  and 0.5WL T , respectively, a line of receivers located at a depth of 
3.0WL and a point source of P waves at ( ) ( ), 0.0 ,0.125r z WL WL= . Using equation (46) 

results in the *S  onset angle, *χ , offset Fr  and ray parameter, Fp  given as  

 ( )1
* sin 30.0χ β α−= = °  (52) 

 *tan 1.732Fr z WLχ= =  (53) 

and consistent with the definition of  

 *sin 1.0 / .Fp T WLχ
β

= =  (54) 

Using the solution method presented in this report the following values of the offset Fr , 
and complex ray parameter, Fp  may be obtained numerically as 

  1.5490 Fr WL=  (55) 

 ( )  1.0046 0.0959Fp i T WL= +  (56) 

The related angle *χ  that the onset or distinct *S  ray makes with the vertical is complex 
in this instance, defined as 

 ( )1
* sin Fpχ β−=  (57) 

where in equation (57) 0.5WL Lβ =  and Fp  is given by equation (56). This results in 
the real part of *χ  being approximately equal to 27.31°  which is slightly less than that 
predicted by the earlier method, as is the value of Fr . 
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The fact that both of these high frequency approximations to the *S  arrival region of 
existence predict that there is a cutoff angle defining an area where the wave does not 
exist is questionable. It is highly probable that what is occurring here is similar to passing 
from the illuminated to the shadow region in a diffraction type problem and that this 
arrival is present in some form and for some angular distance into the conical region 
defined by *Θ . The interference of the reflected VPS  and the *S  events in this near offset 
area in the �exact� synthetics (Figure 7) hinders speculation into what is actually 
occurring. 

Preliminary investigations using analytical continuation of the solution into the 
�region of non-existence� and boundary layer methods have been somewhat impeded by 
the presence of both exponential and nonexponential terms in the integrand containing 
the radical ( )1/ 22 2pη α −= −  which must be dealt with in a proper manner. This suggests 

that a higher order approximation to the geometrical reflected VPS  in the vicinity of a 
branch point should first be obtained and what is learned from that exercise applied to a 
higher order solution for the *S  problem. 

One matter that has received the expected clarification when the second method is 
used is that the appropriate time delay is introduced into the travel time of the *S  wave. In 
the first approximation the onset time of the *S  arrival was the time taken for a ray to 
travel from the point *O  to the receiver where 0t =  corresponded to the P wave source 
excitation at O . This delay is approximately the time taken for the P wave to travel from 
O  to *O . 

DISCUSSION 
Two figures from the paper of Hron and Mikhailenko (1981) showing their original 

numerically computed synthetic traces together with the source wavelet used which, in 
part, lead to the search for a mathematical explanation of what has become to be referred 
to as the *S  arrival are displayed in Figure (7). The inclusion of figures displaying fairly 
contentious findings from a previously refereed paper was done to minimize any 
preliminary defence of the results and focus on resolving the issues introduced. 

Apart from the presence of the nongeometrical *S  arrival in the synthetic traces other 
presumably anomalous behavior may be seen in Figure 7. The first of these is a nonzero 

VPS  reflected arrival in the vertical component of particle displacement at zero offset. 
Studies that consisted of taking higher order terms in the Sommerfeld integral to obtain 
modified geometrical optics (asymptotic ray theory) approximations showed that the 
numerical results obtained by Hron and Mikhailenko (1981) were correct. The nonzero 

VPS  reflected arrival, evident in the vertical component of particle displacement, was 
treated using this approximate method by Daley and Hron (1987) and their findings were 
subsequently confirmed by Psencik (1988). 

A second area where close examination of the synthetics reveals apparent 
inconsistencies is at far offsets. Neglecting the PP  reflected arrival due its interference  
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FIG. 7. A collection of figures from the paper of Hron and Mikhailenko (1981) showing synthetic 
traces of the vertical component of particle displacement. The source wavelet used is located in 
the upper right corner. The values of the compressional and shear wave velocities are 1.0 WL T  
and 0.5 WL T , respectively. The P wave source is at 0.0 WL  offset and at a depth of 0.125 WL  

below the free surface. A line of receivers is located at a depth of 3.0 WL . The *S  arrival is quite 
prominent at large offsets and the unexpected (from a zero order geometrical optics perspective) 

VPS  reflected event at zero offset on the vertical component of particle displacement and the 

phase mismatch of approximately 2π  at far offsets for the same event. The scaling of the traces 
differs between the two panels. 
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with the direct P  ray and considering the VPS  event an unexpected (in the zero order 
geometrical optics solution sense) deviation almost totally in terms of phase distortion 
from what one would expect is seen. From the insert in the figure containing the source 
wavelet it would appear that the arrival is out of phase by 2π  if zero order asymptotic 
ray theory were used as an indicator. This apparent inconsistency is due to the saddle 
point corresponding to the VPS  reflected event being in the proximity of the branch point 
at 1p α −=  (Figure 5). A higher order saddle point solution in this vicinity is more 
complicated than problems of this type discussed in the literature (Felsen and Markuvitz, 
1974) in that the quantity that varies most rapidly here is the radical ( )1/ 22 2pη α −= −  and 
it is present in both the exponential and non-exponential integrand functions in the 
Sommerfeld type integral exact solution. A canonical problem for an HS  seismic wave 
propagation problem with this type of functional dependence on the radical η  is 
considered in Daley and Hron (1988) where a modified higher order saddle point solution 
is derived and compares favourably with a numerically exact finite difference - finite 
integral transform results. 

CONCLUSIONS 

The saddle point approximation to the non-geometrical *S  arrival discussed in a paper 
written 2 decades ago was re-examined and the basis for one of the several characteristic 
properties, which were enumerated there, has been analyzed in a more mathematically 
correct manner. It has been shown that the restriction of the existence of the *S  wave due 
to the forcing of *p  to lie on the real p  axis producing what was termed the distinct ray 
also occurs when *p  is a complex quantity. The existence of this apparent sharp 
boundary is still questionable and requires further investigation. 

The introduction of the more mathematically correct zero order saddle point solution 
does not greatly improve the numerical results, but by its implementation provides a 
better insight into the existence of this non-geometrical arrival including a time lag for 
the disturbance to travel from the point source of P  waves at O  to the apparent source of 
the *S  wave at *O . 

The more mathematically correct method of evaluating the zero order saddle point 
contribution associated with the *S  arrival has raised several additional questions of 
mathematical if not seismological interest and should be addressed by considering the use 
of modified higher order saddle point solution techniques. 

The P wave source considered here has been assumed located in the vicinity of the 
free surface. The case of the same type of source adjacent to an interface at depth of high 
velocity and density contrast has been shown to behave in a similar manner (Daley and 
Hron, 1983b), but has not been addressed in this report. 
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