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Modelling 3D anisotropic elastic data using the pseudospectral 
approach  

Richard A. Bale 

ABSTRACT 
A method is described for modelling 3D elastic data in anisotropic media, based on the 

pseudospectral approach.  The goal is to model the effects of azimuthal anisotropy on 3D 
shear-wave data, in particular the phenomenon of shear-wave splitting.  The 
pseudospectral approach is used in preference to other gridded methods on efficiency 
grounds, because of its economy in the number of grid points required.  Numerical issues, 
including dispersion, boundary effects and non-local operator artifacts are discussed, and 
solutions to them are provided. A comparison with the analytic result for a displacement 
source in a homogeneous medium shows the high accuracy of elastic pseudospectral 
modelling.  Preliminary results of modelling in 2D and 3D anisotropic models are 
presented and analyzed.  The expected shear-wave behaviour is observed in simple cases.  
This pseudospectral modelling technique is suitable for testing multicomponent 
processing or imaging algorithms in the presence of anisotropy. 

INTRODUCTION 
Numerical modelling has a long and well established role in geophysical analysis.  

When selecting a numerical modelling technique, the geophysicist should ask: �What is 
my purpose in modelling, and how does that influence the choice of algorithm?�  The 
theory of modelling, whether ray-tracing, finite-difference or pseudospectral, is a rich 
mixture of wave theory, numerical techniques and computer science.  Thus, one possible 
motive (quite legitimate in my view) is the intrinsic interest of the theory.  More 
typically, the goal will be to create synthetic seismic data, enabling us to better 
understand real data, and to test imaging or processing methods. 

My objective here is to model elastic behaviour in 3D azimuthally anisotropic media.   
More specifically, it is to be able to simulate shear-wave splitting in realistic cases: e.g. 
multicomponent surveys over azimuthally anisotropic rocks, such as fractured reservoirs.  
Shear-waves are especially sensitive to fractures, which cause two separate polarizations 
of the shear-waves.  This phenomenon, known as shear-wave splitting or �birefringence�, 
is useful for determining the fracture directions and intensity.  Li (1998) observed that 3D 
converted wave data are especially useful for fracture detection because of the polarity 
changes that occur when crossing the principle axes.  Furthermore, if birefringence is 
present and uncorrected, it degrades the image (e.g. Bale et al., 2000).  Azimuthal 
anisotropy is also referred to as transversely isotropic with a horizontal symmetry axis, or 
�HTI�. 

Clearly this goal has some influence on the choice of algorithm.  For an excellent 
comparative review of modern modelling techniques, see Carcione et al. (2002).  For the 
sake of brevity, the following analysis considers only the most likely candidates. 

One possibility, ray-tracing, can be adapted to elastic, anisotropic media (Červený et 
al., 1977), and has the advantage that aspects of the wavefield (e.g. specific modes) can 
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be isolated.  The limitations of ray tracing are that it is based on high frequency 
asymptotic solutions to the wave equation, that it is not possible to simulate the full 
wavefield, and that it fails in the presence of caustics. Some approaches overcome this 
latter restriction, for example by the use of Gaussian beams (e.g. Červený et al., 1982; 
Hill, 1990).  Another important consideration is the complexity of the ray-tracing 
algorithm required for the fully anisotropic case.  

A more attractive option is one of the grid methods, such as finite difference or finite 
element. These have the advantage of honouring low frequency behaviour and modelling 
the full wavefield.  They also provide the ability to generate snapshots or movies of the 
wavefield.  Their main disadvantages are cost and the inability to isolate specific events.  
Much of the complexity associated with modern finite-difference methods, such as 
variable grids and domain decomposition, is related to their CPU and memory demands.    
These arise primarily due to the number of nodes per wavelength required to accurately 
model the wavefield. 

The pseudospectral method (Kosloff and Baysal, 1982) is an alternative grid based 
modelling method similar to finite-difference, but with one key difference.  Instead of 
using difference operators, Fourier transforms are used to apply the spatial derivatives.  It 
can be viewed as a limiting case of higher order finite-difference, when the operator size 
equals the grid dimension.  In seismic modelling, the main advantage is that many fewer 
grid points per wavelength are needed to attain any desired accuracy.  According to 
Fornberg (1987) a fourth order finite-difference code needs 4 times as many grid points 
per wavelength as the pseudospectral approach, for each dimension.  Hence, it is 
particularly attractive for modelling in 3D.  It is primarily for this reason, and the relative 
ease of coding required, that the pseudospectral approach is adopted here.  The 
pseudospectral method also shares the other advantages of finite-difference methods, 
such as movie generation. 

Like other techniques, the pseudospectral method has its own peculiar difficulties, 
including numerical dispersion, model discretization effects, boundary effects and non-
local operator artifacts.  These must be addressed in order to achieve acceptable results. 
Historically, the pseudospectral method may also have been avoided for 3D modelling 
due to the global nature of Fourier operators, and the resulting need to transpose the data 
when the complete wavefield could not be stored in core memory (Holberg, 1996).  Now, 
with the availability of (relatively) inexpensive random access memory, this drawback no 
longer exists. The complete elastic wavefield, for moderate sized grids (i.e. sufficient in 
size for the pseudospectral method), can be stored in core memory. 

Previous work using finite-difference or pseudospectral methods to simulate shear-
wave birefringence includes Ramos-Martinez et al. (2000) and Fang (1998). Ramos-
Martinez et al. used finite-difference modelling to analyze splitting for a range of 
different anisotropic symmetries ranging from HTI to monoclinic, in a 2.5-D medium. 
Fang used the pseudospectral method with second order finite-difference time derivatives 
to model elastic waves in a 2D medium with azimuthal (HTI) anisotropy.   

In the first section of this paper I review the basic theory of elastic modelling using the 
pseudospectral method, including a brief outline of computational considerations.  In the 
second section I describe the numerical issues that need to be addressed, and how this is 
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currently being done.  A companion paper (Bale, 2002) considers one of these issues, 
non-local operator artifacts, in more detail.  In the last section I present some results of 
pseudospectral elastic modelling for both 2D and 3D examples.   

BASIC THEORY 

Elastic modelling 
The modelling of wave propagation in elastic, possibly anisotropic, heterogeneous 

media is based upon the following equation of motion: 

 jljlj fu += ,σρ !! , (1) 

where ρ is density, uj is the component of displacement in the jth direction, and fj is the 
body force which in this case is taken to be the source term.   

Above, and throughout this paper, I use the convention that �,l� denotes partial 
differentiation with respect to xl, the lth spatial coordinate, and also the Einstein 
summation convention whereby twice-repeated indices indicate an implied summation.  
Suffices repeated more than twice imply that the summation convention is suspended.  
All suffices take the values 1,2 and 3, and to clarify I use x,y and z when appropriate.  
Also u!!  indicates the second time derivative of u. 

The stress-strain relationship (generalized Hooke�s law) between the stress σjl, and the 
strain emn, is given by: 

 mnjlmnjl ec=σ , (2) 

where cjlmn is the 4th rank stiffness tensor.  In turn the strain tensor is given by: 

 ( )mnnmmn uue ,,2
1 += . (3) 

Equation 3 shows that the strain tensor is symmetric.  Simple physical arguments can 
be used to show the symmetry of the stress tensor.  These symmetries taken together 
imply that the stiffness tensor is symmetric under interchanges of j with l, m with n, and jl 
with mn.  The result is, that for the most general elastic medium, there are �only� 21 
independent elastic coefficients rather than the 81 of an arbitrary 4th rank tensor.  Also the 
following coordinate transformation rule is useful for creating arbitrary symmetries:  
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An alternative representation of the stiffness uses the Voigt notation to replace the 4th 
rank tensor cjlmn by a symmetric 6x6 matrix C as follows: 
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where the lower half of the matrix is implied by symmetry. 

The pseudospectral technique 
In pseudospectral modelling the spatial derivatives are evaluated using multiplications 

by -ikj after first transforming to the wavenumber domain using a Fourier transform of 
the function along the appropriate spatial dimension, xj.  For example, to evaluate the 
term nmnm xuu ∂∂≡, in equation (3), the following inverse Fourier transform is used 
(suspending the summation convention): 
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where the Fourier transform of mu  with respect to the spatial variable xl is: 
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The Fourier transform is applied along the direction given by the superscript (l). Also 
1−=i . 

Hence, to evaluate the �divergence� of stress jllljl σσ ∇≡,  required for (1), the 
following is used: 
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where the summation over l is implied on the left hand side, but is explicitly written on 
the right hand side, since the summation convention is violated. 

Unlike the spatial derivatives in pseudospectral modelling, the temporal derivatives 
used to step the wavefield forward in time are typically evaluated using a finite-
difference approximation of some kind.  This results in a disparity between accuracy of 
the spatial and temporal operators, and can give rise to numerical dispersion.  I will 
address this issue in the �Numerical Issues� section. 
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Computational cost 
The most significant contribution to cost of the pseudospectral method is performing 

Fourier transforms using the FFT (for the isotropic case, the cost of calculating the stress 
using equation (2) is also almost negligible, though this is not so for the anisotropic case).  
Hence, a useful guide to efficiency of the algorithm is a count of the number of Fourier 
transforms required.   

Evaluating ljl ,σ in equation (1) consists of:  

1. Performing a Fourier transform along each spatial direction for each 
component (a total of 3M FFTs where M=Nx.Ny+Nx.Nz +Ny.Nz and Nξ is the 
number of grid points in the ξ direction). 

2. Applying equation (6) for each component and each spatial direction, and 
combining them using  (3) to get emn (this entails 3M inverse FFTs) 

3. Multiplying by the stiffness tensor using (2), to get σjl  

4. Performing a Fourier transform along each spatial direction, l, for σjl  (another 
3M FFTs) 

5. Using equation (8) to evaluate the second spatial derivative with respect to xl 
(another 3M FFTs). 

Note that the total is 12M FFTs (6M forward and 6M inverse).  

In the case when the medium is homogeneous, the stiffness tensor may be exchanged 
with the second derivative to give the homogeneous wave equation:  

 jnlmjlmnj fucu += ,!!ρ  (9) 

This assumption gives an apparent computational advantage, since there is no need to 
do any Fourier transforms between the first and second derivatives.   

This approach might be thought useful (and appears to be suggested by some authors: 
e.g. Lou and Rial, 1995) in the case where the medium is slowly varying, such that 
derivatives ljlmnljlmn xcc ∂∂≡, of the stiffness tensor can be neglected.   

However, to exploit this advantage, it is necessary to apply (9) in the Fourier domain, 
to reduce the rank of the tensor from 3 to 1 before applying the inverse Fourier transform.  
This is only legitimate for a totally invariant medium.  Even for a slowly varying medium 
(9) must be performed in the spatial domain.  Hence it would be necessary to first 
evaluate nlmu , by inverse Fourier transforms. Evaluation of nlmu , entails a total of 27M 
inverse Fourier transforms, since every one of the 9 combinations arising from 
multiplication by (-kn kl) for n=1,�,3 and l=1,�,3 must be separately computed, for 
m=1,�,3.  For this reason, the more accurate heterogeneous approach, using equations 
(1) and (2),  is also the more efficient method, except for the (usually uninteresting) case 
of a homogeneous medium. 
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NUMERICAL ISSUES 

Wraparound and absorbing boundaries 
Finite-difference methods are susceptible to artificial reflections from the boundaries 

unless appropriate counter measures are taken.  A common approach to dealing with this 
problem is to adopt a one-way wave equation at the borders, so that waves pass outwards 
only.  This completely suppresses the reflections in the 1D case, but is less than perfect 
for higher dimension grids. 

The pseudospectral method is based on periodic Fourier basis functions, so the 
corresponding problem is not artificial reflection, but grid wrap-around.  Waves exiting 
from the bottom of the grid reappear at the top and vice versa.  Similarly waves exiting 
the right side of the grid will reappear at the left and vice versa.  Obviously the one-way 
wave equation approach is of no use here, since the waves would still wrap around to the 
opposite side. 

Instead, I use a simple but reasonably effective approach, devised by Cerjan et al. 
(1985).  The wavefield and its time derivative are multiplied by a gentle taper function 

))(exp( 2xx −−α  within a border zone near the grid boundary, after each time-step.  The 
result is that waves propagating into the borders are suppressed gradually to very low 
amplitudes as they reach the edge.  This works well for normally incident waves but 
suffers from reflections of low-wavenumber energy at oblique angles. A more recent 
method, known as the perfectly matched layer (PML), was originally developed for 
electromagnetic problems by Bérenger (1994), and has been successfully used for elastic 
wave problems (Collino and Tsogka, 2001). PML solves the oblique incidence problem 
by applying absorption only to the component of the wavefield normal to the boundary.  
Adopting PML is an obvious possible improvement to the current modelling code. 

Dispersion and higher order time marching  
Consider the following second order central difference approximation to the second 

derivative: 
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where the time discretization step ∆t, is also the sample interval of the wavelet and 
modeled output.  Application of (10), combined with Fourier domain spatial derivatives, 
results in numerical dispersion (frequency dependent velocity), which can be analytically 
computed, as discussed in Appendix A.  As shown in Figure 1, the dispersion can be 
reduced by choosing small time-steps (incurring additional computational cost), but not 
eliminated.  
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(a)      (b) 

FIG. 1: Numerical dispersion, for 2nd and 4th order difference approximations, as a function of 
frequency from 0-60Hz, with c = 3000m/s. The graphs in (a) and (b) show the same curves, but 
with velocity ranges of 100 m/s and 10 m/s respectively. Phase velocity for the 2nd order 
correction, computed using equation (A5), is plotted for ∆t = 2ms (solid blue line) and ∆t = 1ms 
(dotted purple line).  Phase velocity for the 4th order correction, computed using equation (A6), is 
plotted for ∆t = 2ms (dot-dash green line) and ∆t = 1ms (dashed red line).  The solid black line 
shows the exact velocity of 3000m/s.  From (b) it is seen that the 4th order correction with 1ms 
sampling is almost exact. 

The form of the dispersion can be determined and corrected for any specific velocity, 
as described in the appendix, but not for multiple velocities or mode types.  Instead, an 
alternative approach to reducing dispersion is the use of higher order derivatives.  I 
follow the approach described in Dablain (1986), starting from Taylor series expansions 
of ( )ttu j ∆−  and ( )ttu j ∆+ : 
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Substituting into the right hand side of equation (10) cancels all the odd derivatives, 

and gives the difference approximation: 
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If only the first term on the right side is retained we get the standard 2nd order 
approximation, but keeping both terms gives 4th order accuracy (this could, of course, be 
extended with more terms to arbitrary accuracy).  Both terms on the right hand side must 
be replaced by spatial derivatives.  The first term comes directly from equation (1).  The 
key step, known as the Lax-Wendroff correction (Lax and Wendroff, 1964), is to replace 
the second term in equation (12) by spatial derivatives. 
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Making use of the relationship in equations (1), (2) and (3): 
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which amounts to applying the linear operator in (1) but using u!! (itself computed from 
(1)) and f!! (computed analytically, or by using Fourier transforms) in place of u and f.   

The dispersion associated with use of the 4th order correction in equation (12) is 
considerably less than that of the 2nd order equation (10), as can be seen in Figure 1. 

After dropping ( )( )4tO ∆  terms, equation (12) can be separated (following Lou and 
Rial, 1995) into the following equations, which are used for the time marching steps: 
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For each time-step the modelling proceeds by computing 22 tuu jj ∂∂≡!! and 
44 tu j ∂∂ using equations (1) and (13), and then using equation (14) to step forward both 

ju! (i.e. velocity) and ju .  For the duration of the source wavelet, the force term fi in 
equation (1) is equal to the successive samples of the wavelet at the grid position of the 
source. Subsequently there is no force term.  Likewise f!! , in equation (13), is injected 
sample by sample for its duration. 

Staggered grids and anisotropy 
The modelling is performed using staggered grids to make the Fourier odd derivative 

operators compact (Özdenvar and McMechan, 1996; Carcione, 1999; Corrêa et al., 2002).  
The staggering works exactly for isotropic media or anisotropic media that is aligned 
with the grid (at least orthorhombic symmetry).  For non-aligned anisotropy, such as HTI 
with principle axes at some angle other than 0° or 90° to the grid, the staggering is exact 
for only part of the stiffness tensor.  The details of this technique are given in a 
companion paper (Bale, 2002). 
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Non-aligned interfaces and anisotropy 
The main advantage of the pseudospectral method may also be its Achilles heel.  The 

use of the Fourier domain for applying derivatives allows accurate modelling with as few 
as two grid points per wavelength.  This means that the medium parameters are also 
discretised relatively coarsely, compared to, say, finite-difference.  This is perfectly 
acceptable for interfaces (model changes) that are aligned with the grid, but results in a 
�staircase� type interface when they are not.  The consequence is the presence of spurious 
diffractions in the data, originating from the corners of the steps in the staircase.  Various 
solutions to this problem have been proposed, but the one which seems to best 
accommodate anisotropy is that given by Muir et al. (1992).  Their approach is to regard 
each grid point as the center of a cell.  In the case of interfaces crossing a cell they use 
Schoenberg-Muir calculus (Schoenberg and Muir, 1989) to average properties for the cell 
after an appropriate tensor rotation.  I have implemented this technique for the 2D case, 
and found it reasonably successful at suppressing the unwanted diffractions.  However, 
the examples in this paper are all grid aligned.   

RESULTS 
The pseudospectral code was written using MATLAB 6.5.  The modelling examples 

all ran on a desktop machine equipped with a 2.27GHz Pentium 4 CPU and 512MB of 
RAM, except for the 2D example which ran on a laptop with a 775 MHz Pentium 3 CPU.  
For the 3D elastic examples running on the Pentium 4 the memory available effectively 
limited the maximum model size to about 1 million grid nodes, or 128x128x64 nodes.  
Although this is usually considered a rather small grid for numerical modelling, the 
pseudospectral limit of two grid nodes per wavelength allows reasonable sized physical 
dimensions of the modelling domain. 

Comparison with 3D analytic solution  
To test the algorithm for a simple homogeneous isotropic example, I compare with the 

analytic solution given by Aki and Richards (1980) for a point dislocation source (see 
Appendix B).  The calculation uses a 64x64x64 grid with 20 meter spacing, and a time-
step of 2 ms.  The source, located at the center of the grid, has a Ricker wavelet time 
signature with center frequency of 20hz.  The Ricker wavelet and its second derivative, 
used for equation (13), are shown in Figure 2.  Receivers are located at the positions 
listed in Table 1, lying along a vertical slice that is diagonal in x and y.  The receiver 
positions are such that the wavefield is sampled along one vertical and one horizontal 
axis, and also along 2 diagonal directions. 

The results for the X and Z component responses are shown in Figure 3.  With the 
exception of some small differences for the P-wave arrival on receiver 2, directly below 
the source, the pseudospectral and analytical results are indistinguishable.  

Table 1: Receiver positions relative to source at grid center. 

Receiver Number 1 2 3 4 
x (m) 200 0 200 -200 
y (m) 200 0 200 -200 
z (m) 200 200 0 200 
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 (a)  (b)  

FIG. 2: The source signature, a 20 Hz Ricker wavelet (a), and its second time derivative (b). 

2D layered medium 
A 2D version of the modelling code was applied to the layered model shown in Figure 

4.  The modelling is done first with isotropic velocities in all layers, and then with 
azimuthally anisotropic (HTI) velocities in the second layer.   For the anisotropic case, 
the stiffness matrix is based on the parameters of Lou and Rial (1995; Table 3).  They 
used Hudson theory with a crack density, CD=0.1 (where VNaCD 3≡  for N cracks of 
radius a, an a volume V).  I have scaled their values by 0.31 to get slower velocities.  The 
resulting stiffness matrix is given below in Table 2 (symmetry axis coordinate system) 
and Table 3 (grid coordinate system).  The phase velocities are shown in Figure 4(d).  

Table 2: cijkl for HTI model with symmetry axis in x direction.  Values, in GPa, are obtained by 
scaling Lou and Rial (1995) Table 3 by 2/3. 

kl 
ij 11 22 33 23 13 12 

11 11.1 3.275 3.275 0 0 0 
22 3.275 11.65 4.25 0 0 0 
33 3.275 4.25 11.65 0 0 0 
23 0 0 0 3.7 0 0 
13 0 0 0 0 2.85 0 
12 0 0 0 0 0 2.85 

 

Table 3: cijkl for HTI model with symmetry axis at 45° to x direction, by rotation of cijkl in Table 2.   

kl 
ij 11 22 33 23 13 12 

11 10.175 4.475 3.7625 0 0 0.1375 
22 4.475 10.175 3.7625 0 0 0.1375 
33 3.7625 3.7625 11.65 0        0     0.4875 
23 0     0   0  3.275 0.425 0 
13 0        0  0  0.425 3.275 0 
12  0.1375 0.1375 0.4875 0 0 4.05 
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(a)  

(b) + 

FIG. 3: Time history comparison between the pseudospectral result (red dashed) and analytic 
result (blue solid) for horizontal in-line component (a), and for vertical component (b), for isotropic 
homogeneous model.  Receiver numbers correspond to positions listed in Table 1. 
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(a)  (b)  

(c)  (d)  

FIG. 4: Layered model for 2D example.  The P- and S-wave velocities for the isotropic model are 
shown in (a) and (b).  The density is shown in (c).  For the anisotropic example the middle layer is 
replaced by the HTI layer defined in Table 2.  The phase velocities for this layer, measured as a 
function of azimuth, φ, from the symmetry axis direction, are shown in (d). 

The source is a vertical displacement point force with a 15Hz Ricker signature.  It was 
placed at 500m from the left hand edge of the model.  One hundred 3-C (X-Y-Z) 
receivers were placed at 12.5m intervals between 562.5m and 1800m from the left hand 
edge.  Both source and receivers were on the top edge of the model, with a free surface 
boundary condition.  The grid size was 256x256; the grid spacing is 8m along both 
directions. The wavefield was modeled using 2000 time-steps of 1ms each. 

Figure 5(a) shows the shot record generated by isotropic modelling.  Both pure 
reflections (P-P, S-S) and converted wave reflections (P-S, S-P) are easily identified on 
the in-line (X-component) and vertical (Z-component) receivers.  The conversions during 
transmission are much weaker, and are not annotated.  The cross-line (Y-component) 
receiver doesn�t record any response, since no SH-wave is generated in this case.  Figure 
5(b) shows the shot record generated by modelling in the HTI model.  The presence of 
azimuthal anisotropy in the second layer gives rise to some new features.  First, the Y-
component responds to reflections arising from both top and bottom of that layer.  The 
response from the top is interesting as it demonstrates (as expected) an anisotropic 
reflection coefficient.  Second, the wave-modes that are transmitted through this layer (in 
particular, the later P-S event) are clearly split into two distinct arrivals.  This is the 
evidence of shear-wave splitting. 
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FIG. 4: Isotropic vs. HTI modelling in 3 layer medium.  Figures show X, Y and Z component 
responses to vertical displacement source over three layered medium where second layer is: (a) 
isotropic and; (b) HTI with a symmetry axis at 45° to the in-line direction.  Events annotated for 
pure and converted reflections from interfaces A and B in Figure 3(a). Note the presence of split 
shear-waves on the PS conversion from interface B in (b). 
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3D homogeneous isotropic vs. HTI 
The 3D examples are simple in concept, but give rise to complex wavefields that 

require some careful analysis.  The medium is homogeneous, with two different 
scenarios: one in which it is also isotropic and a second in which it is azimuthally 
anisotropic, having HTI with a symmetry axis at 45° to the in-line (x) direction. For the 
isotropic case, the parameters are as follows: VP=3000 m/s, VS=2000 m/s and 
ρ=2000kg/m3.  For the anisotropic case, the stiffness matrix is given by Table 4.  

Modelling is done on a grid with nx=ny=128 and nz=64. The grid spacing is 20m 
along all 3 axes.  The source, a vertical displacement with a 20Hz Ricker spectrum, is 
located at the center of the grid.  Receivers are set in a �common offset ring� of radius 
300m at a depth of 160 meter below the surface, in order to eliminate boundary effects.  
An absorbing boundary is  used on all  sides, of width 16 points for the vertical sides, and 
8 points (160 meters) for the top and bottom.  The model geometry is shown in Figure 5. 

The source generates both P- and S-waves which are recorded at the receiver 
locations. Snapshots of the wavefield are shown in Figures 6 and 7, for the isotropic and 
HTI cases respectively.  In the isotropic case (Figure 6) both P- and S-wave polarizations 
are confined to the plane of propagation.  So, for example, an x-z slice (i.e. constant y 
coordinate) taken through the source position, shows only a response on the X and Z 
components (Figure 6a). 

In the HTI case however, this is no longer true.  The P-wave polarization does remain 
in the propagation plane, but the S-wave excites particle motion out of the propagation 
plane, due to the anisotropic response.  The onset of shear-wave splitting is also visible, 
although the two S-wave surfaces are not sufficiently separated to avoid interference with 
one another.  

Figure 8 shows the seismic records at the receiver common offset ring. The isotropic 
results (a)-(c)  are readily understood.  The amplitude varies sinusoidally on both 
horizontal components, as the radial direction varies between in-line (x), cross-line (y), 
anti-in-line and anti-cross-line.  For instance, as the azimuth passes through a direction 
90° from in-line, the expected polarity change occurs on the X component (Figure 8a). 

The HTI results in Figure 8 (d)-(f) are less intuitive.  There is clear variation in arrival 
time with azimuth for both P- and S-wave arrivals.  In the S-wave case, this variation is 
associated with the developing of a fast and slow shear-wave, due to splitting.  On the 
horizontal components, the P-wave arrival maintains the polarity behaviour seen in the 
isotropic case, whereas the S-wave arrival displays a shift in the position of the polarity 
change relative to the isotropic case.  In the case of totally split shear-waves it would be 
expected that these nulls occur at an azimuth orthogonal to the principle axis for that 
mode.  In other words, we would expect the slow shear-wave to vanish along the fast 
direction and vice versa.  In the case modeled here the splitting is incomplete, and so the 
nulls occur in intermediate locations. 

The behaviour observed here is representative of what one may expect for a converted 
wave experiment with a complete coverage of azimuths at some non-zero offset.  Here, 
the displacement source at depth plays the role of the mode conversion.  An obvious 
question, and one of importance for converted-wave exploration is whether one could 
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infer the direction of the principle axes from the data in Figure 8.  A detailed study of this 
question is beyond the scope of this paper, but an initial evaluation has been done.   

Figure 9 shows graphs of particle motion or �hodograms� in the XY plane for both the 
isotropic (a) and HTI (b) model data.  These hodograms use time windows which cover 
the shear-wave arrival. They give an indication of the observed polarization., both its 
direction and its degree of linearity.  The isotropic hodograms are consistent with purely 
radial polarizations, as expected. The HTI hodograms in this case show non-linearity for 
all azimuths other than those of the principle axes of anisotropy.  However, the degree of 
non-linearity is relatively small except for azimuths around 105°, 165° and their 180° 
opposite angles.  This raises doubt whether, in this case, a robust estimation would be 
possible in the presence of noise, based on hodograms.  It remains to be seen whether 
other methods such as Alford rotation (Alford, 1986) or 3D variants on that theme 
(Gaiser, 2000) would succeed here. 

Table 4: cijkl for HTI model with symmetry axis at 45° to x direction, all values in GPa.   

kl 
ij 11 22 33 23 13 12 

11 21.7 9.52 8.045 0 0 0.315 
22    9.52 21.7 8.045 0 0 0.315 
33  8.045 8.045 24.86 0        0     1.055 
23 0     0   0  6.985 0.895 0 
13 0        0  0  0.895 6.985 0 
12  0.315 0.315 1.055 0 0 8.62 

 

 

FIG.  5: Geometry of the 3D model example.  The source is at the center of grid, position 
x=1280m, y=1280m, z=640m, indicated by the * in the figure.  There are 120 receivers located at 
a depth of 160m, in a circle centered on the grid, with 3° azimuthal sampling. The horizontal 
source-receiver offset is 300m.  Also shown are three perpendicular planes through the source 
with constant x, y and z respectively.  These planes are used to show slices of the wavefield in 
Figures 6 and 7. 
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(a)  

(b)  

(c)  

FIG. 6: Snapshots of X-component (a), Y-component (b) and Z-component (c) displacements, 
after 0.4 seconds, from modelling in homogeneous isotropic medium.  Shear-wave polarizations 
are confined to propagation planes.  The locations of the source in the center, and of the receiver 
ring near the surface are shown in black. 
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(a)  

(b)  

(c)  

FIG. 7: Snapshots of X-component (a), Y-component (b) and Z-component (c) displacements, 
after 0.4 seconds, from modelling in homogeneous HTI medium, with 45° rotation of symmetry 
axis relative to in-line (x) direction.  Shear-waves exhibit horizontal polarization, which is no 
longer confined to propagation plane (see constant x and constant y planes), due to splitting. 
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      ISOTROPIC           HTI 45° 

(a)     (d)  

(b)     (e)  

(c)     (f)  

FIG. 8: Seismic records for X, Y and Z component receivers in �common offset ring� shown in 
Figure 5. The isotropic case, corresponding to Figure 6, is shown in (a-c).  The HTI case, 
corresponding to Figure 7, is shown in (d-f). 
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(a)  

(b)  

FIG. 9: Horizontal component hodograms for receivers at 15° increments for isotropic model (a), 
and 45° HTI model (b). Hodograms are computed over window from 0.3-0.45 seconds, 
corresponding to shear-wave arrival (see Figure 8). The red arrows indicate the source-receiver 
radial direction, which the particle motion is expected to follow in the isotropic case.  For the HTI 
case, the hodograms align with the radial direction at the principle axes (45°, 135°, 225° and 
315°), but otherwise are non-linear, due to fast and slow S-wave interference. 
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Runtimes 
The runtimes for pseudospectral modelling are strictly linear in the number of time-

steps taken. The relationship between runtimes and the number of grid-nodes can be 
expected to be slightly greater than linear, due to the FFT being proportional to Nlog(N).  
The small 3D test used to validate the algorithm took about 20 minutes for 200 time-steps 
on a 64x64x64 grid, running on a 2.27GHz Pentium 4 with 512Mb RAM.   

For 250 time-steps on a 128x128x64 grid, using the same hardware, the isotropic 3D 
modelling took approximately 2.5 hours, equivalent to 2 hours for 200 steps. Hence an 
increase by a factor of 4 in the model size gives an increase in runtime of 6.  This is in 
part due to the log(N) term in the FFT cost, and in part caused by a small increase in 
paging to disk for the larger model.  By comparison, the anisotropic 3D modelling took 
5.5 hours CPU for the larger model.   

I found that increasing the grid size to 128 in all directions (on the same machine) 
increased runtimes by an order of magnitude, due to excessive paging to disk.  However, 
it should be expected that by increasing the RAM available to 1Gb, isotropic modelling 
on a grid of 128x128x128  could be done within 5 hours for 200 steps, and anisotropic 
modelling in approximately 12 hours.   So 1000 time-steps, giving 2 seconds of data at 
2ms sampling, would take under 3 days. 

CONCLUSIONS 
The pseudospectral method provides an accurate, efficient means to perform 3D 

elastic modelling in anisotropic heterogeneous media.    Its accuracy results from using 
exact spatial derivatives applied in the Fourier domain.  This is combined with fourth 
order time-marching to reduce dispersion.  A comparison against an analytic solution was 
used to verify accurate modelling.  The use of a staggered grid is also necessary to avoid 
generation of non-local operator artifacts associated with model interfaces.  Its efficiency 
results from requiring only 2 grid points per minimum wavelength.   

Elastic modelling in azimuthally anisotropic media using shows behaviour such as 
shear-wave splitting, whereby differently polarized shear-waves propagate with differing 
speeds.  This was observed both for 2D and 3D examples.  An analogue to converted-
wave acquisition consists of a vertical displacement source at depth, and receivers near 
the surface.  When these receivers are radially arranged around the source the 
polarization observed is non-linear except for azimuths parallel or perpendicular to the 
symmetry axis. 

The cost of modelling fully 3D anisotropic elastic data is expensive but not 
prohibitive, and does not necessarily require specialized hardware.  Obviously, however, 
modelling anything more than a small number of shot records would necessitate either 
the use of  parallel hardware such PC clusters, or a very great deal of patience. 

FUTURE WORK 
With regard to the modelling algorithm itself, an anticipated improvement is to adopt 

PML absorbing boundaries (Bérenger, 1994; Collino and Tsogka, 2001). A possible 
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extension is to incorporate viscoelasticity, following work done by Carcione et al.(1988) 
and Carcione (1995, 1999).  

However, as indicated in the introduction, development of the modelling code is a 
means to an ends.  The focus for future work will be on generating 2D and 3D 
multicomponent synthetic datasets with shear-wave splitting in heterogeneous media, 
such as: dipping layers over HTI media; tilted fractures (TTI media). That 
notwithstanding, the code is general and  could equally be used for other modelling 
enterprises such as modelling propagation through gas clouds. 
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APPENDIX A 

NUMERICAL DISPERSION ANALYSIS  
Here I describe the analysis of numerical dispersion for the acoustic case.  The 

appropriate equation of motion for an acoustic medium (Kosloff and Baysal, 1982) is: 

 SP
c

P +=







∇∇ !!

ρρ 2

11  (A1) 

where P is the pressure, ρ is density, c is the wave velocity and the source term is given 
in terms of the body force, f, by: 

 f⋅∇=
ρ
1S  

I consider the case where density is constant (or slowly varying) such that (A1) may 
be written in the spatial Fourier domain as: 
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c
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As for the elastic case, the second order time derivative is approximated by: 
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Consider the far-field situation for (A2), such that we can ignore the source term, S, 
and assume a plane wave solution: )(

1
~ tieP ω−⋅= xk . Substitution into (A2), and using the 

difference approximation (A3) to evaluate the time derivatives, yields: 
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Thus the actual phase speed of the wave is given by: 

 ( ) ( )2sin2 t
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k
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ω
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That the wave propagates dispersively (with a frequency dependent velocity) is a 
result of the time differencing.  An exact evaluation of P!! in (A2) would give cv = , 
independent of frequency, as expected.  The phase velocity as a function of frequency is 
plotted for two different ∆t values in Figure 1, showing the effect of numerical 
dispersion. 

A similar analysis for the 4th order correction yields the following phase speed: 
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which suffers considerably less dispersion, for any given t∆ , as is seen in Figure 1. 

Comparison with finite-difference 
Finite-difference methods suffer both temporal and spatial dispersion.  For an operator 

which is second order in time and space, the finite-difference dispersion equation is: 
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At the stability limit, tcx ∆=∆ , this equation leads to the exact phase velocity: 

  ( ) c
k

v ±== ωω  (A8) 

Thus there is a �balancing� of numerical dispersion effects in finite-difference 
modelling of the wave equation, not naturally present in pseudospectral modelling (A4). 

A simple correction for simple media 
Now let�s return to pseudospectral modelling: in cases where the velocity variation is 

small, an operator designed to compensate for dispersion for a specified velocity could be 
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used in place of the exact spatial derivative operator, to mimic the balancing observed in 
finite-difference methods.  For example, in the 1D case, the following replacement is 
used for k in the derivative: 

   ( ) cc xkxk sin→  (A9) 

where 2tcxc ∆≡ .  This substitution is simply made whenever �ik is required to apply a 
derivative, and entails no extra cost as it is pre-computed.  Application of this correction 
for both the true medium velocity, and a lower velocity is illustrated in Figure A2.  This 
is readily extended to higher dimensions, using radially symmetric versions of (A9). 

However, I have found that this correction is less useful for media with large variation 
in velocities, or for elastic media where both P and S modes are present, since it can only 
correct for dispersion relating to one propagation velocity.  For this reason the fourth 
order correction described in the main text, with dispersion given by (A6), is preferable. 

 

(a) (b)  

(c) (d)  

FIG A2: Numerical dispersion in 1D acoustic modelling. The source is located at  2000m, and has 
a 30Hz zero-phase Ricker wavelet signature.  The medium is homogeneous with a velocity of 
3000m/sec.  The wavefield is shown after 0.4 seconds using: (a) a 1ms time-step; (b) a 4ms time-
step with no dispersion correction; (c) a 4ms time-step with dispersion correction for actual 
medium velocity of 3000 m/sec, and; (d) a 4ms time-step with dispersion correction for 2500 
m/sec. 
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APPENDIX B 

ANALYTIC SOLUTION FOR POINT DISLOCATION SOURCE 
Aki and Richards (1980, Vol. I., p. 70) give a closed form solution to the elastic 

wavefield generated by a point dislocation source in a homogeneous isotropic medium.  I 
state this result without proof here. 

A point force S(t) at the origin with direction ej can be written as: 

 jtS exf )()( δ=  (B1) 

where x is a vector from the origin (i.e. from the source) to the measurement point.  
Letting x=r   be the distance from the source, the displacement at x is given by: 
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where the three terms on the right hand side are, respectively: the near field term given by 

 
( ) ( ) τττ

πρ
δγγ

β

α

dtS
r

u
r

r

ijjiN
i ∫ −

−
=

/

/

34
3

; (B2b) 

the P-wave term, given by 
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and the S-wave term, given by 

 
( ) ( )β

πρβ
γγδ

/
4 2 rtS

r
u jiijS

i −
−

= . (B2d) 

Here γ  is the unit direction vector defined by rxii =γ , α and β are the P and S-
wave velocities respectively, and ρ is the density of the medium. 

Equation (B2) is used to generate the analytical solution of Figure 3 in the main text. 


