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A visual relationship between Kirchhoff migration and seismic 
inversion 

John C. Bancroft 

INTRODUCTION 
The exploding reflector model and the finite-difference methods automatically take 

care of the amplitudes when using the downward continuation method. Similarly, the FK 
method of migration applies a defined amplitude scaling when moving the data in the FK 
space. Estimation of the diffraction stack amplitudes proved more of a challenge until the 
Kirchhoff integral solution to the wave equation provided a theoretical foundation. 

Assumptions used in the design of geological models are reviewed in preparation for 
evaluating the design of migration programs that are derived from the wave-equation. A 
review of Kirchhoff migration is then presented that begins as a diffraction stack process, 
and then proceeds to matched-filtering concepts and the integral solution to the wave-
equation. One-dimensional (1D) convolution modelling and deconvolution are then used 
to introduce inversion concepts that lead to �transpose� processes and matched filtering. 
These concepts are then expanded for two-dimensional (2D) data to illustrate that 
Kirchhoff migration is a �transpose� process or matched filter that approximates seismic 
inversion. 

MODELS 
The kinematic solutions used in seismic migration are relatively straightforward to 

derive or estimate, and are independent of the type of models used. However, the 
amplitudes of the wavefield on wavefronts, or along raypaths, are not straightforward, 
and do depend on the type of model used. Consider for example, an expanding wavefield 
for a source (shot) record that is acquired along a straight line. We assume that the data 
represents a 2D vertical plane below the acquisition line. A synthetic 2D seismic source 
record could be created that is based on a 2D solution to the wave-equation. This 
convenient solution will contain concentrically expanding, circular wavefronts with 
amplitudes that vary proportionally to the inverse of the square-root of the distance 
travelled. A more accurate solution would be based on a 3D model with spherically 
expanding wavefronts, giving amplitudes that vary proportionally to the inverse of the 
distance travelled.  

Consider Figure 1 that contains illustrations of 1D, 2D, and 3D models, all with the 
same constant velocity and lossless medium. A source at any point in the 1D model will 
propagate along the line and the amplitude will not attenuate with distance. In the 2D 
plane, energy from a source point will propagate outward, away from the point in 
concentric circles. The total sum of energy in one concentric circle will be the same in 
another concentric circle. The energy density along the perimeter of each circle will 
decrease proportionally to the reciprocal of the circumference or radius. Since the 
amplitude is proportional to the square root of the energy density, the amplitude will 
decrease proportionally to the square root of the radius or distance travelled. In the 3D 
volume, the energy will propagate outward in concentric spheres with an energy density 
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that decreases proportionally to the inverse of the surface area of the sphere, or radius 
squared. The amplitude (again the square-root of the energy density) will therefore 
decrease proportionally to the inverse of the radius. In summary then, the amplitude 
radiating away from a point source is: 

• 1D constant 

• 2D 1
r

∝  

• 3D 1
r

∝  
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FIG. 1: Models for a) one dimension (z), b) two dimensions (x, z), and c) three dimensions (x, y, 
z). 

Often models are defined in 2D and extended to 3D with assumptions that the geology 
is independent of the third dimension, a typical assumption for a 2D seismic line that is 
acquired normal to the dipping structure. The 2D model is defined in Figure 2a, with the 
corresponding 3D in part (b). 
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FIG. 2: Seismic models, a) 2D, b) 3D model that is equivalent to the 2D model in (a), c) a 1¼D 
model, and d) a 2½D model. 

One might assume that a 2D seismic line modelled in the 2D space of Figure 2a would 
be the same as one modelled from a seismic line that crosses the surface of the 3D 
geology in Figure 2b. However, for the two models to be the equivalent, the 3D volume 
requires a line source and possibly a line receiver across the surface of the volume in the 
y direction. Actually, one point-receiver, anywhere along the line, should give the same 
result. 

It becomes more complex with the definition of 1¼D for a source point in a 3D 
medium that varies only with z as in Figure 2c, or 2½D in which a source point is 
considered in a 3D volume with the geology that varies only in the (x, z) plane as 
illustrated in Figure 2d. 
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The complexity increases (or possibly simplifies) when models are created, or 
migration algorithms assume, that spherical divergence has been corrected with some 
form of �gain recovery�. Fortunately, amplitudes computed using a 2D algorithm can be 
corrected for 3D amplitudes with simple correction factors described by Geiger (2001). 

EVOLUTION OF AMPLITUDE IN KIRCHHOFF MIGRATIONS 

Diffraction stacking or Kirchhoff migration produces one migrated sample at a time 
by: first, computing a diffraction shape for a scatterpoint at that location; second, 
summing and weighting the input energy along a diffraction path; and third, placing the 
summed energy at the scatterpoint location on the migrated section. The process is 
repeated for all migrated samples. During summation, the amplitudes of the input data are 
weighted, and it is this weighting of the input data that we are investigating, and which is 
the dominant objective of many inversions. 

Seismic traces contain wavelets that represent different properties, depending on the 
assumed model. For example, with flat data, the peak amplitude of the wavelet may be 
assumed to represent the amplitude of a reflecting boundary, or the same wavelet may be 
considered part of a wavefield. The amplitude will be handled differently when 
combining all the traces to form an image of the subsurface. Amplitudes may be 
computed by a number of processes such as: 

• stacking  

• diffraction stacking, and matched filtering 

• solutions to the wave-equation 

• inversion principles 

all of which are based on a specific type of model. 

Stacking 
Consider the preparation of traces in a common midpoint (CMP) gather where gain 

recovery has been applied to each trace. We now assume that the amplitudes of the 
wavelets represent the reflection coefficients from the subsurface geology. Normal 
moveout (NMO) correction has been applied to match the traveltimes of offset traces 
with those at zero-offset. A mute is then applied to ensure that all the contributing 
wavelets look similar. These wavelets are summed, and then divided by the number of 
contributing traces, to produce an average of the wavelets. This averaging process 
maintains the amplitude of the wavelet while attenuating the amplitude of noise. The 
result is a zero-offset trace with an improved signal to noise ratio (SNR).  

This simple procedure has been used by the industry for many years and is a very 
powerful process. It automatically handles uneven acquisition geometries and produces a 
section of the subsurface that has balanced amplitudes that are ready for a zero-offset 
migration. 

The same procedure can be applied to a prestack migration where all traces within the 
migration aperture are assumed to contain wavelets that represent reflectivity. For one 
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migrated trace location, all input traces within the migration aperture will have moveout 
correction defined by the double-square-root equation, followed by a mute and stacking 
to complete the prestack migration. Note that the stacking includes the division of the 
total number of contributing prestack samples for each migrated sample. It is that simple. 
Prestack-migrated sections that use this brute force approach will have reasonable 
amplitude balancing in areas with uneven acquisition geometry (without creating 
artificial data to fill in the missing shots). 

This stacking method ignores amplitude variations with offset (AVO) that are 
associated with the Zoeppritz equations. However, most migration algorithms also ignore 
these effects, some deliberately, so that they may be observed in the migrated offset data 
and lead to additional parameter estimation. 

Although the stacking method of controlling amplitudes is considered brute force, I do 
want to emphasize its robustness. Some data examples appear to produce better 
subsurface images with post-stack migration that with prestack migration (Cary, 2001). 
These examples usually occur in areas that have unbalanced acquisition geometries and 
the conventional stacking of common midpoint (CMP) gathers accurately balances the 
amplitudes. A prestack migration that is based on wavefield assumptions may not be able 
to handle the unbalanced geometry and produce an inferior result. In these areas, brute 
force stacking in the prestack migration may produce a superior result. 

There are a number of weaknesses in this stacking model, especially when we 
consider the prestack energy, recorded at the surface, to be part of a wavefield. Prestack 
algorithms that consider these additional insights may have an improved image with a 
better SNR.  

Diffraction stacking 

Diffraction stack migration was an early form of the Kirchhoff method and was a 
relatively simple concept when considering the kinematics of the method. The seismic 
data was assumed to be composed of diffractions where the amplitudes decreased down 
the flanks by a ratio of T0/T, as illustrated by the arrows in Figure 3. 

 

Amplitude  =T0/T

x

t 

T0T 

 

FIG. 3: Assumed amplitudes along a diffraction. 
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Could the migration be improved if a weighting factor was included when the energy 
in the diffraction was summed? If so, what would that weighting factor be? Two possible 
weightings are illustrated in Figures 4a and 4b. The first weighting scheme of Figure 4a 
does nothing at all (i.e. it is a stacking process if the sum is divided by the number of 
samples), but allows the program to run faster. The second weighting method assumed 
that the weaker parts of the diffraction should be amplified to compensate for their 
decreasing amplitude. The answer came with the matched-filter concept. 

 

Amplitude = 1.0

x

t 

 

a) 

 

Amplitude = T/T0

x

t 

 

b) 

FIG. 4: Possible weighting schemes for diffraction stacking. 

Matched filtering 

Matched filtering is an engineering concept (see Ziemer, 1995) that extracts a known 
signal from a noisy channel. The noisy signal is cross-correlated with the signal that is 
being detected. This cross-correlation produces a zero-phase wavelet (autocorrelation) 
with its central peak at the zero-time of the wavelet, and with a maximum signal-to-noise 
ratio (SNR). This is the same concept used with vibroseis data in which the source sweep 
is cross-correlated with the recorded seismic signal. The cross-correlation places a zero-
phase wavelet (or possibly a mixed phase wavelet), at the time of a reflection event. 
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In the migration problem, the signal to be detected is the diffraction. Diffraction stack 
migration then becomes a cross-correlation of the data with an estimate of the diffraction. 
According to matched-filter theory, the amplitudes on the estimated diffraction must 
therefore match those on the original diffraction, as defined in Figure 3. This method of 
migration will produce an optimum SNR on the migrated signal. Claerbout (1992, page 
108) does provide a caution when using the method of matched filters when estimating 
amplitude verses offset; but more on that later. 

The matched filter has provided a basis for choosing the amplitude weighting factors 
along the diffraction to provide an optimum SNR. Even if wrong amplitude weighting 
factors were used, the Kirchhoff method would still give a reasonable image of the 
subsurface. Consequently, even if the wrong model was chosen when deriving the 
amplitude weighting factors, reasonable results are obtained with the migration 
algorithms. However, there are other factors that must also be considered as described 
below. 

Additional amplitude considerations for diffraction stacking 
Figure 5a shows two diffractions with an aperture that extends to the maximum time 

where a shallower diffraction contains a larger summation path relative to the deeper 
diffraction. If the input section contained evenly distributed noise, the shallower migrated 
data would contain more noise as it has a larger summation path (see the examples 
published in Larner 1990, but first distributed privately in 1976). Early diffraction stack 
and Kirchhoff migrations exhibited this shallow noise, and it was considered a negative 
feature of the methods.  

x 

t

 
a) 

 x 

t

 
b) 

FIG. 5: The extent of diffractions, a) full aperture and b) dip-limited to 45 degrees of dip. 
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The shallow noise problem was rectified by limiting the aperture on a diffraction to a 
maximum dip limit, as illustrated in Figure 5b. Note that the shallow diffraction has a 
much smaller summation path and will have less noise.  

Now assume that the input section contains only horizontal reflectors, illustrated by 
the two horizontal events in Figure 5b. The events have the same wavelet that is 
represented by the width of the two lines. The tangential area of the deeper diffraction is 
larger and will produce a larger amplitude than that summed by the shallow diffraction. 
The actual size of the summation window is proportional to the size of the Fresnel zone, 
which, for a given wavelet will increase in size proportionally to the square-root of the 
traveltime. (It is not proportional to T as one might expect, as the frequency of the 
wavelet remains constant as T changes.) We will therefore expect an additional amplitude 
term that compensates for the depth of a diffraction given by1/ T . 

Another factor requiring attention is the effect that velocity has on the size of the 
summation window. The asymptotes of a low velocity are steeper with a narrow aperture, 
while a larger velocity has shallower asymptotes with a larger aperture. This effect, 
combined with the size of the Fresnel zone, produces an additional scale factor that 
compensates for variable velocities and is given by1/ V . 

The three factors of matched filtering, the size of the Fresnel zone, and variable 
velocity, give a combined scale factor A2D for 2D data given by 

 
0 0

2
1 1

D
T TA
T T V T TV

= =
. (1) 

Note that there is also the question of spherical divergence. Has it been applied prior 
to migration, or is it a part of the migration process itself? In addition, the unbalanced 
units of equation (1) may also provide a scaling problem,  

Phase considerations 
The methods of modelling with diffractions, diffraction stacking, or wavefront 

propagation using Huygen�s principle, have another feature in common, and that is a 
phase-shift that occurs on linear events. The phase-shift is 45 degrees for 2D data, and 90 
degrees for 3D data. There is also some frequency filtering that accompanies the phase-
shift. These effects are correctable by comparing the wavelets from horizontal events 
before and after the process. They became deterministic when it was realized that the 
diffraction stack method was an approximation to the Kirchhoff integral solution of the 
wave-equation. 

KIRCHHOFF INTEGRAL SOLUTION TO THE WAVE-EQUATION 
The parameters used in the diffraction stack method were estimated from the physical 

modelling experiments. This migration process became rigorous when it was recognized 
(Schneider 1978) that the Kirchhoff integral solution to the wave equation, which was 
used in optics, gave a theoretical solution for seismic migration. This theoretical solution 
provided both the amplitude and phase filters that had been previously predicted by 
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experimentation. A 2D integral solution to the wave-equation from Gazdag (1984) is 
shown in equation (2): 

 
( )

1
2

2-D 1 1
cos pp x ,z ,t 0 (x,z 0,t r/c) dx

t2 rc
β ∂

∂π
= = = =∫

 (2) 

where r is the radial distance from the source receiver location to the scatterpoint, c = 
V/2, and β the geological dip for the appropriate position on the diffraction. The cosine 
term may be replaced by T0/T, giving a more familiar form of: 

 
( ) 0

3
2

1
2

2-D 1 1
T pp x ,z (x, t r/c) dx

tVT

∂
∂

= =∫
. (3) 

The square-root derivative of the input data, when evaluated in the frequency domain, 
produces the 45-degree phase-shift along with an increase in the amplitude that is 
proportional to the square-root of the frequency. For 3D data, a full derivative is required 
of the input data. Equation (3) shows the amplitude scaling being applied at the time of 
summation. Dellinger et al. (1999) have shown that the scaling can be eliminated from 
the summation process (thereby increasing the speed of the algorithm) by applying the 
�T� weightings to the input data before summing, and the �T0� weighting (including the 
velocity V at T0) after the summation has been completed. 

The Kirchhoff, FK, and downward-continuation methods of seismic migration are 
based on wave-equation solutions. These migration algorithms produce an image of the 
subsurface by propagating the energy recorded on the surface back to the area of the 
reflector. In contrast to these wave-equation methods, seismic inversion attempts to 
estimate the reflectivity of a geological model from the recorded energy. Quite often, 
these inversions produce an algorithm that is almost identical to that of the Kirchhoff 
method, with only slight changes to the amplitude scaling. 

INTRODUCTION TO GEOPHYSICAL INVERSION 

Geophysical forward modelling involves estimating a response, such as seismic data, 
from a known geological model. Geophysical inversion is the �reverse� procedure and 
estimates a geological model from recorded seismic data, borehole data, or other 
observations such as gravity and/or electromagnetics. The inversion can estimate rock 
parameters or create some form of a subsurface image; be a single or multi-dimensional 
problem; broadband or band-limited to seismic data frequencies; and be formed from a 
combination of geophysical data and observations. In addition, mathematical inversions, 
such as the least-squares method, Born-WKBJ inversion, linear and non-linear methods, 
etc., are used with the above geophysical inversions. Understanding the specific uses of 
the word inversion can be a challenge; however, an excellent starting point for a literature 
review is the 1988 SEG Geophysical reprint series, No. 9, edited by Lines and Levin. 

Early approaches to inversion by Lindseth (1979) attempted to estimate the seismic 
impedance by combining integral forms of the seismic traces with low-frequency 
information derived from stacking velocities or sonic logs of nearby wells. Other 
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approaches use least-squares methods to minimize errors between real data and data 
created from some geological model (see all papers by Lines). Other approaches by 
Bleistein (2001) use advanced mathematics such as integration by stationary phase and 
perturbation theory to estimate reflectivity from simple models. The theory is then 
applied to the Kirchhoff weightings for more complex models. Topics often associated 
with these methods involve true amplitude processing and/or seismic illumination. 

It is the intent of this section to introduce a heuristic approach to the least-squares 
method using basic matrix theory. I will start with a one-dimensional model of 
convolution that uses a two-dimensional wavelet matrix, then present the inversion as a 
deconvolution with a known wavelet. Two-dimensional seismic modelling and migration 
simply become a 2D version of the 1D example.  

Convolution model 

Our model for a seismic data s(t), will be the reflectivity r, convolved with the 
diffraction d(t), and ignoring for the moment the spatial dimensions, i.e., 

 ( ) ( )s t r d t= ∗ . (4) 

If equation (4) is expressed in the frequency domain, the convolution becomes a product, 
i.e., 

 ( ) ( )S f R D f= • . (5) 

This linear form of the equation enables a simple estimation of the reflectivity at each 
frequency from 

 

( )
( )

S f
R

D f
=

. (6) 

The actual reflectivity could then be found by summing all the frequency components 
using the Fourier transform. The problem with this procedure is that D(f) may go to zero 
at some frequency, and that we can�t perform the division in equation (6) when there are 
zeros in D(f). As in deconvolution, the procedure becomes an estimation problem that is 
solved with a variety of methods. In addition, what is the �inverse� of D(f)? Are there any 
other ways to linearize the problem? What could be done to D(f) that would allow the 
division to take place? 

Linearization of convolution using linear algebra 

We had linearized the convolution process above by using the frequency domain. We 
can also linearize convolution using matrix theory of linear algebra. I will start with a 
one-dimensional model where the reflectivity, wavelet, and trace are functions of time as 
defined by the convolution equation, 

 ( ) ( ) ( )s t r t w t= ∗ . (7) 
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To many, this equation implies that we place a number of wavelets on the seismic trace, 
each with a starting time defined by the time of the reflector, and with a wavelet 
amplitude that is proportional to the amplitude of the reflectivity, as implied in Figure 6. 
The amplitudes on the trace will be defined when all the wavelets have been inserted. 

An alternate equation that defines the convolution process is given by  

 
( ) ( ) ( )s t r w t dτ τ τ

∞

−∞

= ∗ −∫
, (8) 

where we assume that the time is constant at t to compute one seismic trace sample at 
s(t). We can then use any time, t, to compute all values on the trace. These two 
approaches to convolution, (adding an entire wavelet to a trace, or completely computing 
one sample at a time), produce the same result, and we will use both these concepts. 

r(t) 

w(t)

s(t)

 

FIG. 6: Illustration of the convolution problem in a conventional manner. 

The functions used in equation (7) and (8) may be sampled with the same time interval 
and defined in digital space as a reflectivity vector, r, with M data elements, wavelet, w, 
with K data elements, and a seismic vector, s, in which each element is defined the 
summation equation 

 
n m n m

m
s r w −=∑

, (9) 

in which the maximum number of samples in s is N, defined by  

 1N M K= + − . (10) 

In equations (8) and (9), the wavelet is reversed in time and delayed as illustrated by 
wr in Figure 7. One sample in the seismic vector s is computed by first, multiplying the 
corresponding elements in r and wr, i.e. the dot product, and second, summing these 
elements. Finally, all samples in s are computed by varying n, (1 ! n ! N). Figure 7 
shows the reversed wavelet, wr, (for one output sample, n) in a vector that matches the 
size of the reflectivity vector, where the summation parameters in equation (9) would be 
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(1 ! m ! M). This form is convenient when considering the vectorized math that follows. 
However, an observant reader may recognize that a more efficient summation window 
would be defined by the K samples of the wavelet, i.e., (n-K+1 ! m ! n), where n is the 
defined output sample. 

 
r 

wr 

s 
nth element

Dot product and 
sum for one sample 

(nth) in s 

M 

N 

K 

 

FIG. 7: Convolution defined for a single sample. 

All elements of the seismic vector can be computed by repeating the process 
illustrated in Figure 7 for each value of n as illustrated in Figure 8, which shows 
numerous wavelets with varying delays. In this cartoon figure, and those that follow, the 
sample interval is much finer along the rows to define the wavelet than between the rows 
for illustration purposes. The intent is to illustrate the reversed wavelet moves one sample 
to the right when progressing to the next row, i.e. at the nth row, the right side of the 
wavelet is at the nth sample. The sample by sample product of the reflectivity vector with 
the vector at the nth row, (containing the enlarged wavelet), is summed then stored at the 
nth location in the seismic vector. 

 
rm 

sn 

mn n mws r −=∑

Wm-n 

M

N 

n=m 

 

FIG. 8: Computing other samples in convolutional model. 
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The wavelet data illustrated in Figure 8 is in a convenient form to be defined by a two-
dimensional matrix W that has N rows and M columns, with the number of columns 
defined to match the number of elements in the reflectivity vector. Each row in the matrix 
defines at least a portion of the delayed and time-reversed wavelet, wm-n, where n 
represents the row number and m the column number. All the elements on a given 
diagonal of W will be the same, i.e. W is a Toeplitz matrix. To be consistent with matrix 
algebra, we define the reflectivity as a column vector r, and the seismic trace as a column 
vector s. The matrix equation for the convolution process then becomes a linear process, 

 [ ][ ] [ ]MN M N×
W r = s

, (11) 

where, for convenience, the dimensions are shown in square brackets below the matrix 
and vectors.  

 

=

rW s 
 

FIG. 9: Matrix form of the convolutional model 

Since W represents two-dimensional sampled data, traces can be plotted as rows in 
Figure 8, or plotted as columns in Figure 9. The intent of this figure is to emphasize the 
impulse response form of the convolution process. Assume only one reflectivity element 
that progressively moves down its corresponding wavelet column. As the impulse steps 
down the column, the amplitude of the wavelet in W is added into the seismic vector, s. 
Other reflectivity impulses will also sum the corresponding wavelet to the seismic trace. 
This is in contrast to convolution as defined by equation (9) and illustrated in Figure 8. 

An interesting feature of W, displayed as impulse responses in Figure 9, is that these 
impulse responses could vary with time and change from a high-frequency wavelet at 
shallow times to a low-frequency wavelet at deeper times, according to some attenuation 
property such as �Q�. This non-stationary form of deconvolution was presented by 
Margrave (1998). Figure 10 contains such an image, where the wavelet increases in 
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length with increasing time to simulate a constant-Q. It is this time-varying property that 
will allow time-varying diffractions in the following section. 

 

=

rW s 
 

FIG. 10: Matrix form of the convolutional model with time varying wavelets. 

Reversing the modelling process 
It was easy to do the forward modelling where the seismic trace was computed from a 

reflectivity and wavelet using equation (11). We now �reverse� this modelling process to 
estimate the reflectivity from a given seismic trace and known wavelet. Let�s start by 
trying to take the inverse of W in equation (11) to get 

 
1

[ ] [ ?] [ ]
?

M M N N

−

×
r = W s

. (12) 

That probably won�t work because we can�t take the inverse of a matrix that is not 
square, and we would have to make M = N. That could be solved, but the biggest 
problem is that W may contain zeros, which, when inverted, would become infinite. 
There are a number of ways to modify W to make it invertible such as adding small 
numbers to eliminate the zeros (such as pre-whitening); however, in this paper I will only 
consider the linear process that leads to the �least-squares� solution. 

Least-squares solution 

One solution to this problem is to multiply both sides of equation (11) by the transpose 
of W, 

 [ ][ ] [ ] [ ] [ ]

T T

MM N N M M N N× × ×
W W r = W s

, (13) 

and then inverting WTW giving 
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( ) 1

[ ] [ ] [ ] [ ] [ ]

T T

M M N N M M N N

−

× × ×
r = W W W s

. (14) 

This solution for estimating r is the well known �least-squares method� because is 
provides an optimum solution by minimizing the square of the error between the data and 
the estimate. The proof of the least-squares property can be found in many texts and 
papers (Lines 1984). The product, WTW, produces a square matrix referred to as A, 
which can be inverted only when there are no zeros in the spectrum of the auto-
correlation wavelet.  

 

WWT 

nth row

mth column

 

FIG. 11: Illustration of WT and W with corresponding rows and columns displayed for taking the 
product of the two matrices. 

What does A look like? The two input matrix are each displayed in Figure 11 with the 
data plotted as rows in WT and as columns in W, preparatory to taking the product of two 
matrices. For one sample in A, an,m, we take the dot product of the nth row in WT, with a 
mth column in W, as illustrated by the highlighted row and column in Figure 11. The 
scalar value becomes the (n, m)th element in the product matrix A, i.e., 

 
, , ,

1

N
T

n m n k k n
k

a w w
=

=∑
. (15) 

This process is partially illustrated in Figure 12 where the mth column of WTW is 
plotted as a transposed vector, Wm

T , horizontally above W. Samples in the mth column 
of A are computed from the dot product of the transposed vector, Wm

T , with the 
corresponding rows of W. This process is identical to taking the auto-correlation of the 
wavelet, with the result identified by the zero-phase wavelet on the column of A.  
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A WT 

>>

wm T 

am,n

mth column

nth row

 

FIG. 12: One column in A is found by taking the dot product of one column in WT with all rows in 
W. 

The square matrix, A, is shown in Figure 13 with vertical traces that illustrate that all 
the new wavelets are the delayed auto-correlation of the original wavelet. Plotting the 
data with horizontal traces should produce the same image (with adequate column 
sampling).  

A  

FIG. 13: The result of A = WTW, the product of a matrix and its transpose. 

All elements on any diagonal in A are equal (a Toeplitz matrix) with the largest value 
on the main diagonal. This is very significant as A is similar to the identity matrix, I, in 
which the data is zero, except for unit values on the diagonal, as illustrated in Figure 14. 
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1 0 0 0 0 0 0 ...
0 1 0 0 0 0 0 ...
0 0 1 0 0 0 0 ...
0 0 0 1 0 0 0 ...
0 0 0 0 1 0 0 ...
0 0 0 0 0 1 0 ...
0 0 0 0 0 0 1 ...
... ... ... ... ... ... ... ...
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 
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    

FIG. 14: An identity matrix. 

A feature of the identity matrix is that the inverse is also an identity matrix, i.e. I-1 = I. 
If we assume that the auto-correlation matrix, A, is an approximation to the identity 
matrix, I, (except for a scale factor), we can now assume  

 [ ] [ ][ ] [ ]

T

M M M MM N N M × ×× ×
= ≈W W A I

, (16) 

and also that  

 
( ) 1

[ ][ ] [ ]

T

M MM N N M

−

×× ×
≈W W I

. (17) 

This simplification allows equation (14) to be reduced to a very simple form,  

 [ ] [ ] [ ]

T

M M N N×
≈r W s

, (18) 

that allows us to define an estimate of the reflectivity, �r , by 

 [ ] [ ] [ ]
� T

M M N N×
=r W s

. (19) 

The reflectivity can be estimated from the product of the seismic vector, s, with the 
transpose of the wavelet matrix, WT. A comparison of equations (12) and (19) show that 
our simplifications have assumed that the inverse to a matrix, W-1, can be approximated 
by a very simple transpose, WT, i.e.,  

 
1

[ ] [ ?]

T

M N M N

−

× ×
≈W W

. (20) 

When WT = W-1, W is an orthogonal matrix with an interesting property that all 
vectors, composed of either columns or rows, are orthogonal, or in a three-dimensional 
system, the three vectors are mutually perpendicular.  
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By claiming the A matrix is equivalent to the identity matrix, I, we assumed the 
wavelet has a broad bandwidth, i.e. that the wavelet is very narrow. However, when the 
wavelet is broad, and the spectrum of the auto-correlation wavelet has no zeros, then the 
inverse of A will produce a spectral weighting that will shape the reflectivity to the 
desired spike. If we don�t �divide� by this spectral weighting defined in A, then equation 
(19) will produce a reflectivity estimate that is band-limited. In summary, it is the 
(WTW)-1 term in equation (14) that recovers the frequency content of the reflectivity. 
Equation (19) will only produce a band-limited form of the reflectivity. 

In conventional deconvolution problems, A is modified to limit the smallest values of 
the frequency amplitudes to a preset level to eliminate zeros, which then allows A to be 
inverted. This is referred to as pre-whitening. Note however, that frequency components, 
beyond the bandwidth of the wavelet, will be amplified as noise and will require filtering 
back to the original bandwidth. 

The above process has assumed that the wavelet is known. We could continue to 
investigate deconvolution that also estimates the wavelet, but I will leave that for the next 
article. We will instead proceed with a few more observations and then compare the 
above process with migration. 
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FIG. 15: Forming a reflectivity trace by cross-correlating the seismic trace with a known wavelet. 

We now examine the estimated reflectivity, �r , defined now by equation (19) and as 
illustrated in Figure 15. Elements in the reflectivity vector are produced by the dot 
product of the transpose of the seismic vector, s, with each row of the transposed wavelet 
matrix, WT. This cross-correlation process forms wavelets in �r  that have a shape of the 
auto-correlation of the input wavelet, with the peak of the wavelet representing the 
location and amplitude of the reflectivity, as illustrated by the red trace in Figure 15.  
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We have therefore produced a band-limited form of the reflectivity. This result is 
identical to that obtained with a matched-filter, i.e. the cross-correlation of the seismic 
trace with a matching wavelet. 

Using the transpose to approximate an inversion is the same as using a matched filter. 

We can also therefore identify the differences between an exact inversion and an 
approximation obtained by a matched filter, i.e. the assumption that WTW ! I. 

KIRCHHOFF MIGRATION AS A TRANSPOSE PROCESS 
There are many �reverse� processes that use the concept of approximating the inverse 

with a transpose. What about seismic modelling and migration? In seismic modelling we 
place a diffraction at every scatterpoint. When using Kirchhoff migration, we define a 
kinematic diffraction shape for a scatterpoint, then weight and sum the input energy 
defined by this shape, and insert the energy at the scatterpoint location. This is, in 
essence, a two-dimensional cross-correlation, and will produce a peak of energy when the 
model diffraction matches a diffraction in the input data, i.e. matched filtering, or by 
approximating the inverse process with a transpose process. We are now in a position to 
visualize and evaluate the limitations of our migration algorithms with true inversion.  

Visualizing modelling data with diffractions 
We will start by modelling a gather of reflectivity traces with the same wavelet matrix, 

W, to get a gather of traces with wavelets as illustrated in Figure 16. One reflectivity 
column vector, where circles now represent the amplitude of the reflectivity, produces a 
corresponding seismic trace vector. But, we want to be able to model a diffraction that 
has an additional dimension.  

 

W 

=

r s
 

FIG. 16: Matrix form of the convolutional model with time varying wavelets. 
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I have defined a 3D diffraction model to accomplish this task that starts with the 
wavelet matrix and adds another dimension of distance out of the page as illustrated in 
Figure 17. The diffractions start at the surface to the left, and increase in depth to the 
right to form a cone. The vertical intersections of the cone form the hyperbolas. 

Matrix multiplication still works because we consider one trace at a time. Rather than 
define the vectors and matrices with numerical values, I will indicate the dimensions on 
the appropriate axis. 

 z 

t 

z
!

t

 

a)       b) 

FIG. 17: The diffraction matrix, D, showing a) the (z, t) view and b) a perspective view showing 
the added dimension of #. 

Figure 17 shows two views of the diffraction matrix D, with dimensions (z, #, t), for a 
constant-velocity medium. A view normal to (z, t) is shown in part (a) and is similar to 
the wavelet matrix M. The added dimension of # is visible in the perspective view in part 

(b). This added dimension # represents the migration aperture, which contains the 
diffractions, identified by the vertical lines and curves. The origin of the diffraction 
matrix, D, is at the peak of the cone where #, z, and t are zero. In a constant-velocity 
medium, the shape of the diffractions are defined by hyperbolas, formed when a vertical 
planes intersect the cone.  
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FIG. 18: Matrix view to obtain a zero-offset section, S, from a reflectivity matrix, R, and a 
diffraction matrix, D. 

Seismic modelling is illustrated in Figure 18 where one sample in S at s(xp, tq) is 
formed when the 2D matrix, R, is dot multiplied by one plane of the 3D diffraction 
matrix, D, at time, t. The matrix, R, is aligned such that the location of the migrated trace 
is above the location of # = 0, as illustrated in Figure 19, which shows the R matrix 
above the diffraction matrix, D. As different migration traces are selected, then the 
matrix, R, above D, is shifted in the corresponding # direction. For example, when the 

red trace in S is being evaluated, the corresponding red trace in RT is located above # = 0. 
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FIG. 19: Matrix view to obtain a zero-offset section, S, from a reflectivity matrix, R, and a 
diffraction matrix, D. 
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The time of the migrated sample tq, is selected by the horizontal plane within D, and 
the trace location xp     , by the relative alignment of that trace above # = 0 as given by 

 
( )

1
( , ) ( , , ) ,

i j

I J

p q i j q p i j
I z

s x t d z t r x z
χ

χ χ
=− =

= −∑ ∑
. (21) 

The D matrix is mainly composed of null space, with scaled values only on the surface 
that is defined at the cone. A constant time (slice) in D intersects the diffraction cone at a 
semi-circle, as identified by one red curve in the perspective views. This corresponds to 
the method of producing a seismic modelled section by summing reflector energy over a 
semi-circle, i.e. when creating a seismic section from modelling, we can either sum 
scatterpoints over a semi-circle to get one modelled sample, or spread energy from a 
scatterpoint along a hyperbolic diffraction.  

Let�s return to matrix theory for a moment, and see what happens when we take the 
transpose of D to get a migrated section from a zero-offset seismic section. The result is 
Figure 20 with DT containing a horizontal cone. Now, the migrated section is dot-
multiplied with constant-depth planes (slices) and the energy is summed where the 
horizontal plane intersects the cone, illustrated at one depth level by a red hyperbola. The 
equation for migration one sample r(xp, zq) is 

 
( )

1

�( , ) ( , , ) ,
i j

I J

p q i q j p i j
I t

r x z d z t s x t
χ

χ χ
=− =

= −∑ ∑
. (22) 

The dual property to hyperbolic summation in migration is that we can spread the 
energy along a semi-circle, defined in Figure 20 by vertical planes in DT at constant time. 
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FIG. 20: Matrix view to obtain a reflectivity matrix, R, from a zero-offset section, S, and a 
diffraction matrix, D. 
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The diffraction matrix illustrated in Figures 17 through 19 shows the constant velocity 
diffractions on a cone. These diffractions can be modified to be time-varying by using 
RMS velocities with shapes illustrated in Figure 21a.  

The diffraction shapes can also be modified to contain constant-offset diffractions as 
illustrated in Figure 21b. Modelling will then produce a constant-offset section. The 
inversion of an offset section would therefore use the transpose of the offset diffractions. 
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a)   b) 

FIG. 21: a) Time-varying diffractions and b) and offset diffractions.  

COMMENTS AND CONCLUSIONS 
The kinematics of diffraction stack migrations are straightforward, however the 

amplitude weightings used when summing the diffractions are still under investigation. 
Migrations that are derived from solution to the wave equation include weighting 
schemes. The integral solution of the wave equation changed the heuristic diffraction 
stack process to the mathematically deterministic Kirchhoff algorithm. 

Inversion techniques provide an alternative solution when imaging the subsurface and, 
in some cases, produce algorithms that are very similar to Kirchhoff migrations. 
Approximate linear algebra inversions were shown to be identical to matched filters, and 
the difference from an ideal inversion identified.  

I have been able to represent most of the mathematics to this point with visual images 
to increase heuristic understanding. However, I have only touched on the principles of 
inversion by investigating the 1D case and extending it to 2D seismic modelling and 
migration.  
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