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ABSTRACT 
Recursive Kirchhoff extrapolation has attractive merits that make it an ideal candidate 

for implementation in pre-stack depth migrations. However, the artifacts resulting from 
data and operator aperture truncations may cause instability and inaccuracy. Tapering is 
widely recognized as an effective tool to deal with truncation problems. In wavefield 
extrapolation, the conventional method is to apply a taper to the data edges and then 
extrapolate the tapered data with a tapered extrapolator. However, as we show in this 
paper, this method may result in a loss of accuracy, especially for the first-step of 
wavefield extrapolation where the input surface data are usually zero-padded to the extent 
of the migration aperture. We introduce an adaptive tapering scheme that varies with 
output locations and handles both truncations dynamically. Synthetic examples show that 
the extrapolation with adaptive tapering achieves a better accuracy than conventional 
separate application of data tapering and operator tapering. 

INTRODUCTION 
Recursive wavefield extrapolation is an essential component of one-way approaches to 

‘wave equation’ imaging (c.f., Berkhout, 1981). These approaches have found wide 
application in recent years as computational power has steadily increased and as 
exploration efforts target areas with strong lateral variations in seismic velocity. These 
one-way recursive extrapolators can deal with complex wave phenomena such as 
multiple arrivals and complicated scattering more easily than nonrecursive Kirchhoff (i.e. 
diffraction stack) methods. 

Many algorithms have been developed that fall into the general category of recursive 
wavefield extrapolation, including finite-difference (Claerbout, 1985), space-frequency 
extrapolation (Berkhout, 1981), phase-shift-plus-interpolation (Gazdag and Sguazerro, 
1984), split-step Fourier (Stoffa et al., 1989), nonstationary phase shift (Margrave and 
Ferguson, 1999; Ferguson and Margrave, 2002), and recursive Kirchhoff (Bevc, 1997; 
Margrave and Daley, 2001; Geiger et al., 2002). There are two main types of 
extrapolation methods, explicit and implicit. Recursive Kirchhoff extrapolation, the focus 
of this paper, is an explicit extrapolation method that is implemented as a convolutional 
filter in the space-frequency domain. Like other explicit extrapolation schemes, it is 
conceptually simple in both 2-D and 3-D, and can be efficiently coded for 
implementation on parallel clusters (Geiger et al., 2002). Moreover, it combines the best 
features of nonrecursive Kirchhoff methods and Fourier wavefield extrapolation as it can 
accommodate irregular acquisition geometries with reasonable computational efficiency 
(Margrave and Daley, 2001). 

Despite the mentioned advantages, stability and accuracy are always big concerns 
when designing explicit recursive Kirchhoff extrapolators. Unlike implicit methods 
which are guaranteed to be stable (Claerbout, 1985), explicit methods tend to be 
numerically unstable (Hale, 1991; Etgen, 1994). In most cases, the instability and 
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inaccuracy are caused by the truncation of the extrapolator to a finite aperture (Nautiyal, 
1993). Generally, there are two kinds of aperture truncations. The first kind occurs 
because the field data are always truncated at the bounds of the recorded survey. The 
second kind arises because the ideal infinite spatial extent of the extrapolation operator 
must be truncated to a finite size to achieve computational efficiency. 

The standard method for handling a finite survey aperture is to apply tapers to the data 
edges prior to extrapolation. A proper handling of the data edges is especially important 
for the first extrapolation step where the input surface data are typically padded with zero 
traces out to the desired size of the migration aperture. However, it is still not clear if this 
static tapering is necessary, as it may introduce additional inaccuracies (Claerbout, 1985). 
The typical remedy for extrapolator truncation is to apply a taper to the extrapolator (e.g., 
Nautiyal et al., 1993). Given these concerns, we are motivated to develop an “adaptive” 
taper that handles both the finite survey aperture (with zero padding) and the finite spatial 
extent of extrapolator operator. 

In this paper, we briefly review the theory of recursive Kirchhoff extrapolation. Then, 
we focus our investigation on the initial step of the wavefield extrapolation where the 
input data are zero padded. A simple synthetic test is used to differentiate the artifacts 
arising from data truncation and extrapolator truncation. Next, we introduce an adaptive 
tapering scheme that minimizes both kinds of truncation artifacts. The adaptive taper is 
integrated into the extrapolator algorithm and varies depending on the location of the 
output point. Thus, it is not necessary to taper the data prior to extrapolation. Tests using 
the synthetic data suggest that the adaptive taper reduces artifacts compared with the 
traditional combination of a data taper plus extrapolator taper. 

THEORY REVIEW: RECURSIVE KIRCHHOFF EXTRAPOLATION 

If ),0,,( ωψ =zyx is a wavefield in the space-frequency ),,( ωyx domain at depth level 
0=z , then its extrapolated value at depth z is calculated as 
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where v is the laterally variable velocity and DW3  is the three-dimensional, space-
frequency, wavefield extrapolation operator. It can be derived by taking the z derivative 
of 3-D Green’s function for constant velocity, i.e. 
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By substituting equation (2) into equation (1), we obtain 
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where 222 )ˆ()ˆ(~ zyyxxr +−+−= . Equation (3) is a spatial convolution of the 
wavefield with an operator that performs a weighted summation along a diffraction curve. 
Therefore, equation (3) is interpretable as a Kirchhoff-style wavefield extrapolation 
operation in the space-frequency domain (Margrave and Daley, 2001). Depending on the 
choice of Fourier transform convention, DW3  can represent either a forward or backward 
wavefield extrapolation operator. 

Similarly, 2-D wavefield extrapolation is given by 

 ∫
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The 2-D wavefield extrapolation operator DW2  can be derived by taking the z derivative 
of 2-D Green’s function, i.e. 
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where 22 zx +=ρ  and )()1(
0 uH  is the zero-order Hankel function of the first kind. For 

numerical calculation, the derivative of )()1(
0 uH  can be deduced as 
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where )(1 uJ  and )(1 uY  are the first-order Bessel function of the first kind and second 
kind, respectively. Standard routines for calculating )(1 uJ  and )(1 uY  can be found in the 
published literature (e.g., Press, 1992). Plugging equation (6) into equation (5), the 2-D 
extrapolation operator for constant velocity becomes 
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where 
ρ

θ z
=cos  is the cosine of the scattering angle. 

A final form for 2-D extrapolator can be developed by substituting equation (7) into 
equation (4), yielding 
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where 22)ˆ(~ zxx +−=ρ . Equation (8) is a 2-D convolution filter that can represent 
either forward or backward extrapolation, depending on the choice of Fourier transform 
convention. 

The simple replacement of constant velocity by lateral variable velocity in equation (3) 
and (8) leads to the extrapolators that can approximately accommodate lateral velocity 
variations. For example, the 2-D and 3-D Kirchhoff GPSPI extrapolators are given by 
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where v(x) and v(x, y)  are the velocities at the output point. 

TAPERING IN THE WAVEFIELD EXTRAPOLATION 
In the real world, the ideal infinite integral in the extrapolator can only be 

approximated by finite summation, either because our acquisition survey is always 
limited to some extent or because we want to confine the summation aperture to reduce 
the computational cost. It is widely agreed that the abrupt truncations in the wavefield 
extrapolation result in artifacts that cause both instability and inaccuracy (e.g., Nautiyal et 
al., 1993; Etgen, 1994). For the initial extrapolation where the input wavefield at z=0 is 
padded with zero traces, more efforts should be devoted to handle the truncations. 
Otherwise, errors that occur in the first step of the extrapolation tend to accumulate with 
subsequent applications of the recursive operator. A simple 2-D synthetic test can be used 
to show the truncation artifacts arising with the first extrapolation step. 

Figure 1 is the synthetic input section that consists of three dipping events, with 
dx=18m, and dt=4ms. For this test, a constant velocity of 2000m/s is assumed for 
convenience, but the general results are also applicable to variable velocity. Before 
extrapolation the data are padded with null traces at the edges so that events can be 
extrapolated beyond the original extent of the survey. The angular aperture of the 
extrapolator is limited to 70 degrees, which is equivalent to setting a maximum scattering 
angle ( )/(cos 1 rz−=θ ) of 70 degrees. The input wavefield is then upward extrapolated 
with a single depth step of 200m. Figure 2 shows the output wavefield with no data or 
extrapolator tapers. The two kinds of truncation artifacts are readily apparent: artifacts 
“1” are from the data truncation and artifacts “2” are due to extrapolator truncation. In 
Figure 3, the extrapolation operator is the same as in Figure 2, but includes a 17.5-degree 
Hanning taper out to 87.5 degrees. The artifacts caused by the extrapolator truncation are 
almost completely removed but the artifacts caused by the data truncation are still present. 
The conventional approach to reducing artifacts from data truncation is to apply an edge 
taper to the data. However, this kind of static data tapering may cause unnecessary 
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accuracy losses, as the data would be double-tapered by both data and extrapolator tapers 
when the extrapolation operator reaches the edge of the data. Thus, we are motivated to 
design an adaptive tapering scheme that can dynamically handle the data and extrapolator 
truncations with minimal loss of accuracy. 

Figure 4 illustrates how the extrapolation operator incorporates an adaptive taper that 
varies with output location. The percent ratio of the taper angle to the maximum 
scattering angle is the key parameter that controls both the taper of the operator aperture 
and the taper of the data aperture. To implement the adaptive taper, the output locations 
are divided into three zones: the left padding zone, the data zone, and the right padding 
zone, corresponding to MH, HI and IN in Figure 4. When the output point O1 lies in the 
left padding zone (MH), the taper scheme is as shown in Figure 4(b). The angle BO1C 
and DO1E are responsible for taper control and chosen such that they have the same 
percentage of angle KO1B and θ (e.g., ∠BO1C=0.25×∠KO1B and ∠DO1E=0.25×θ). 
Once the taper zones (BC and DE) are determined, the tapers can be immediately 
calculated and applied to the input wavefield; When the output point O2 lies in the data 
zone (HI in Figure 4(c)), the angle B’O2C and DO2E are chosen to be the same 
percentage of angle θ. Thus, taper zones B’C and DE can be identified similar to when 
the output point O3 lies in the right padding zone (IN in Figure 4(d)), except that the sign 
of the angle is negative. Here we only showed the tapering scheme for the initial 
extrapolation, but the tapering scheme as described for the data zone can be applied in 
subsequent extrapolation steps. 

Figure 5 and Figure 6 provide a comparison between the extrapolation using 
traditional data taper plus extrapolator taper scheme and the extrapolation using the 
adaptive taper. The wavefield in Figure 5 is obtained by first tapering the synthetic 
section (Figure 1) at the data edges, and then extrapolating with the same maximum 
scattering angle and taper angle used in Figure 3 (70º + 17.5º). Although some artifacts 
are attenuated as compared to Figure 3, the data truncation artifacts are still observable, 
and strongest from the dipping events. The artifacts can be reduced by increasing the 
length of the data taper, but the price is a loss of accuracy in the extrapolated wavefield. 
In comparison, extrapolation using the adaptive taper (Figure 6) better attenuates the 
artifacts with less loss of accuracy in the extrapolated wavefield. 

CONCLUSIONS 
Wavefield extrapolation by recursive Kirchhoff method is attractive because it offers 

the possibility of combining the best features of nonrecursive Kirchhoff or diffraction 
stack methods (i.e., it can accommodate irregular acquisition geometries) with the 
increased accuracy of ‘wave-equation’ methods in areas with strong lateral velocity 
variations. As an explicit method, however, the recursive Kirchhoff method can suffer 
from instability and inaccuracy. Some of these errors are introduced by finite survey size 
and finite operator extent. Both sources of error can be reduced by intelligent application 
of tapers. The conventional approach is to taper the data and the extrapolator separately. 
However, as we show in our synthetic examples, the combination of data tapering and 
extrapolator tapering is not optimal, especially for the initial extrapolation step where the 
input surface data at z=0 is zero-padded out to the desired migration aperture. An 
adaptive taper that varies with output locations can be designed to dynamically handle 
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both kinds of truncations, with improved accuracy compared with the conventional 
approach. 

FUTURE WORK 
In the coming months we will apply the recursive Kirchhoff extrapolator with adaptive 

taper to the complex synthetic dataset (e.g., Marmousi and Sigsbee) and field data. 
Meanwhile, the corresponding C programs are also being developed for parallel 
computation. 
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FIGURES 

 

FIG. 1. Synthetic section padded with zero traces on each side. A constant velocity of 2000m/s is 
assumed for convenient discussion. 

 

FIG. 2. The wavefield in Figure 1 is upward extrapolated using a Kirchhoff extrapolator. A single 
depth step of 200m is taken. Without any treatment of the truncations, artifacts occur on the 
output section as indicated by arrows “1” (from data truncation) and arrows “2” (from extrapolator 
truncation). 

Zero traces Zero traces 
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FIG. 3. The same extrapolation step as in Figure 2 except that an extrapolator taper (Hanning 
window) has been used. The artifacts caused by extrapolator truncation are almost removed by 
the taper, whereas the artifacts caused by data truncation are still present. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

FIG. 4. The adaptive tapering schemes. The maximum scattering angle θ and taper angle are 
used to control the extrapolator taper Their ratio controls the data taper when the maximum 
scattering angle is less than θ. (a) The surface data (z=0) padded with zero traces (AB and FG) 
are extrapolated in a depth step of ∆z; (b) The design of tapers (BC and DE) when output point 
O1 lies in the left padding zone (MH); (c) The design of tapers (B’C and DE) when output point O2 
lies in the data zone (HI); (d) The design of tapers (CD and EF) when output point O3 lies in the 
right padding zone (IN). 
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FIG. 5. Conventional extrapolation with separate data and extrapolator tapers. 

 

FIG. 6. Extrapolation with the adaptive taper. 

 


