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Alternative linearized expressions for qP, qS1 and qS2 phase 
velocities in a weakly anisotropic orthorhombic medium 

P. F. Daley and E. S. Krebes  

ABSTRACT 
Alternative linearized approximations of the phase velocities for the quasi–

compressional, qP , and two quasi–shear wave types, 1 2andqS qS , in an orthorhombic 
medium are presented. Algebraic manipulation of the formulae obtained from the 
standard linearization technique is done so that the phase velocities are in the form 
consisting of the most degenerate cases of phase velocities in an orthorhombic medium 
(ellipsoids) plus anellipsoidal correction (perturbation) terms to compensate for the 
deviation from the degenerate orthorhombic case. The quantities in the formulae for the 
phase velocities all have physical interpretations, that is, they can all be associated with 
some physically realizable and measurable quantity. After obtaining these intermediate 
linearized expressions for the qP , 1 2andqS qS  phase velocities, further approximations 
are made to obtain the equivalent of what are termed fully linearized formulae. This 
includes the introduction of an isotropic background velocity, α , for the qP  and β  in 
the 1 2andqS qS  equations. A comparison of the intermediate linearized approximations 
for the phase velocities with the exact formulae are presented in a series of figures. 

INTRODUCTION 

The specific problem of obtaining linearized approximations of the phase velocities 
for the quasi-compressional, qP  and the two quasi-shear wave modes, 1qS  and 2qS , in 
an orthorhombic anisotropic medium is addressed. The linearization formulae for these 
phase velocities in a general anisotropic medium may be found in the works of Backus 
(1965), Every (1980), Jech and Pšenčík (1989), Mensch and Rasolofosaon, (1997), and 
Pšenčík, and Gajewski (1998), among others. Once linearized approximations are 
obtained, a rearrangement of terms is done to put the anisotropic coefficients from the 
original formulae for the qP  and 1 2andqS qS  phase velocities into alternate 
configurations. This is done so that each of the terms, or individual collection of terms in 
the expressions for the phase velocities, has a physical meaning or can be associated with 
some geometrical formalism. What results are approximations that are less “weak 
anisotropic” than they are “weak anellipsoidal” approximations. 

Exact expressions for the qP , 1 2andqS qS  phase velocities in an orthorhombic 
medium are presented in Every (1980), and Schoenberg and Helbig (1997) as the 
solutions of a cubic equation. An approximation of the above exact equation by Tsvankin 
(1997) produced a linearized formula for the qP  phase velocity in a weakly anisotropic 
medium which was similar to that obtained by Mensch and Rasolofosaon, (1997) who 
also treated the qS phase velocities. Sayers (1994) developed an approximate expression 
for the qP  phase velocity using an expansion in spherical harmonics. In the work of 
Pšenčík, and Gajewski (1998) the case of a general weak anisotropic medium is 
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considered from a linearization perspective based on perturbation methods and arrived at 
the same results as those presented in Backus (1965). Apart from phase velocities, 
quantities such as polarization vectors are discussed for qP  waves in general, and a 
number of specific anisotropic media types, including orthorhombic and two transversely 
isotropic orientation categories are discussed in the paper of Pšenčík and Gajewski 
(1998). 

The difference in the formulae for the qP , 1 2andqS qS  phase velocities in an 
orthorhombic medium derived here, when compared to the results obtained from the 
linearization process, are that they all consist of two parts: an ellipsoidal expression and 
anellipsoidal correction (perturbation) terms. Each term, or specific collection of terms, 
within these phase velocity formulae can be associated with some physical or geometrical 
quantity that is measurable from, for example, travel time data. This modification 
required that some moderately complicated algebraic manipulations of the linearized 
expressions be undertaken.  

It has been shown by a number of authors (for example; Song and Every, 2000, 
Pšenčík et al., 2000) that of the 9 anisotropic parameters defining an orthorhombic 
medium only 3 of these, 11 22,A A  and 33A , can be obtained from the inversion of qP  
phase velocity measurements, together with 3 other quantities related to the deviation of 
the qP  wave surface from the ellipsoidal. To fully specify individual anisotropic 
parameters within this analysis, the inversion of shear wave data producing the terms 

44 55 66, andA A A  is required, together with the abovementioned anellipsoidal deviation 
terms from the qP  inversion process, to obtain the anisotropic parameters 12A , 13A  and 

23A . This facilitates undertakings such as determining methods to pursue for the 
inversion of phase velocity data to obtain the remaining anisotropic parameters that 
define the medium. Once these rearranged formulations are obtained, other matters are 
addressed. This includes ensuring that associated individual quantities that are to be 
determined in the inversion process are all of the same approximate magnitude. 

LINEARIZED qP  PHASE VELOCITY  

 The linearized expression for the qP  phase velocity in a general anisotropic 
medium is given by the apparently simple formula presented in the work of Backus 
(1965), who showed that the linearization process was a direct consequence of first order 
perturbation theory, as 

 ( ) ( )2 , , , 1, 2, 3qP ijk i j kv a n n n n i j k= =n A A A  (1) 

where summation over repeated indices is assumed. Others who have pursued a similar 
method of development for phase velocity determination as well as ancillary quantities, 
such as polarization vectors, are Červený and Jech (1982), Jech and Pšenčík (1989), and 
Pšenčík and Gajewski (1989). These related extensions will not be considered here. 

The quantities in  in equation (1) are the components of the unit phase normal vector, 
which is defined as 
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 ( ) ( )1 2 3, , sin cos , sin sin , cosn n n θ φ θ φ θ= =n  (2) 

where θ  is the polar angle measured from the positive 3x  axis ( )0 θ π≤ ≤ and φ  is the 

azimuthal angle measured in a positive sense from the 1x  axis ( )0 2φ π≤ ≤ . 

The density ( )ρ  normalized anisotropic parameters, ijk ijka c ρ=A A , which have the 
dimensions of velocity squared may be transformed to Voigt notation, mnA , using the 
scheme | |ij k m na A→A  with the following substitutions  

 11 1 22 2 33 3 31 13 5 21 12 6 32 23 4→ → → = → = → = →   (3) 
The linearized expression, from equation (1), for the qP  phase velocity in an 

orthorhombic medium, and introducing Voigt notation, is 

 
( )

( ) ( ) ( )

2 4 4 4
11 1 22 2 33 3

2 2 2 2 2 2
12 66 1 2 13 55 1 3 23 44 2 32 2 2 2 2 2

qPv A n A n A n

A A n n A A n n A A n n

= + + +

+ + + + +

n
. (4) 

Further treatment of the qP  phase velocity will be given in some detail. The same detail 
will not be afforded to the quasi-shear phase velocities as the methods are similar. 

The procedure for obtaining am alternate expression of the linearized qP  phase 
velocity, as an ellipsoid with 3 anellipsoidal correction terms, is initiated by adding and 
subtracting the expression  

 ( ) ( ) ( )2 2 2 2 2 2
11 22 1 2 11 33 1 3 22 33 2 3A A n n A A n n A A n n+ + + + +  (5) 

from equation (4). This results in the formula 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2 4 4 4
11 1 22 2 33 3

2 2 2 2 2 2
11 22 1 2 11 33 1 3 22 33 2 3

2 2 2 2
12 66 11 22 1 2 13 55 11 33 1 3

2 2
23 44 22 33 2 3

2 2 2 2 2 2

2 2 2 .

qPv A n A n A n

A A n n A A n n A A n n

A A A A n n A A A A n n

A A A A n n

= + + +

 + + + + + 
+ − + + + − + +      
+ − +  

n

(6) 

Simplifying the above equation using the properties of the vector n , given by equation 
(2), yields 

 

( )
( ) ( )
( ) ( )
( ) ( )

2 2 2 2
11 1 22 2 33 3

2 2
12 66 11 22 1 2

2 2
13 55 11 33 1 3

2 2
23 44 22 33 2 3

2 2 2

2 2 2

2 2 2 .

qPv A n A n A n

A A A A n n

A A A A n n

A A A A n n

= + + +

+ − + +  
+ − + +  
+ − +  

n

 (7) 

In more compact notation equation (7) may be written as 
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 ( )2 2 2 2
11 1 22 2 33 3

2 2 2 2 2 2
12 1 2 13 1 3 23 2 32 2 +2

qPv A n A n A n

B n n B n n B n n

= + + +

+

n
 (8) 

with the anellipsoidal deviation terms given by 

 ( ) ( )12 12 66 11 222 2B A A A A= + − +  (9) 

 ( ) ( )13 13 55 11 332 2B A A A A= + − +  (10) 

 ( ) ( )23 23 44 22 332 2B A A A A= + − + . (11) 

An expression identical to equation (8) was obtained by Song and Every (2000), 
however, no mathematical formalism was employed. They took the expression for the 
qP  phase velocity in the ( )1 3,x x  plane of a transversely isotropic medium, generalized it     
“ by index permutation “, and numerically tested their results against the exact expression 
for the qP  phase velocity.  

The above equation for the qP  phase velocity is indicative of the shape of the 
slowness surface, which is the inverse of the phase velocity surface (Musgrave, 1970), of 
the qP  in an orthorhombic medium. All terms in ( )1,2,3iiA i =  in Equation 8 have only a 
second order dependence on in , while other linearized forms that appear in the literature 
have a fourth order dependence. This suggests, consistent with the approximation used, 
that the related slowness surface is an ellipsoid with the lengths of the half axes being 
( ) 1 2

iiA
−  ( )1,2,3i = . The inclusion of the anellipsoidal deviation terms, ijB , 

( )12,13, 23ij = , associated with each of the 3 symmetry planes, completes the 
approximation. This is in agreement with the result that one could expect for anisotropic 
media with three orthogonal symmetry planes.  

The slowness surface associated with equation (8) can only be considered 
dimensionally correct in velocity if the deviation terms are omitted or set equal to zero. 
This would yield the degenerate ellipsoidal qP  slowness surface, which for weak 
anisotropy produces a reasonable trend of the actual slowness surface. This “order two 
only” dependence of the iiA  terms will be shown in subsequent sections to also apply to 
the two quasi-shear modes ( 4,5,6)i = . 

If mathematically and physically justifiable approximations are made to the exact 
expression for the qP  phase velocity, ij ij ijB δ ε= −  and subsequently ijδ , defined below, 
differ from those which appeared in earlier literature on a related topic (for example, 
Tsvankin, 1997). This discrepancy is due to the linearization method used. In the above, 
for example, the modified (dimensionless) value 



Orthorhombic linearized phase velocities 

 CREWES Research Report — Volume 16 (2004) 5 

 ( ) ( )13 55 11 33
13

33

2 2ˆ A A A A
B

A
+ − +

≈  (12) 

may be compared with the exact dimensionless expression (Gassmann, 1964) 

 ( ) ( )( )
( )

2
13 55 11 55 33 55

13
33 33 552

A A A A A A
B

A A A
+ − − −

=
−

� . (13) 

If this quantity becomes zero, the qP  phase velocity surface in the ( )1 3,x x  plane 
degenerates to an ellipse. As the 1qP qS−  wave motions are coupled in this plane, the 

1qS  phase velocity surface is forced to be a circle in this plane. It should be restated that 
equation (12) is the linearized form of the exact deviation term in the ( )1 3,x x  plane, 
given by equation (13). 

The related linearized quantity 13δ̂  has the simplified form 

 ( )13 55 33
13

33

2ˆ A A A
A

δ
+ −

≈  (14) 

when compared with the exact expression introduced by Thomsen (1986) 

 ( ) ( )
( )

2 2
13 55 33 55

13
33 33 552

A A A A
A A A

δ
+ − −

=
−

 (15) 

Defining the parameter ( )11 33
13

332
A A
A

ε
−

= , a measure of ellipticity in the ( )1 3,x x  plane, 

and subtracting this quantity from both Equations 14 and 15 yields 

( ) ( ) ( ) ( )13 55 11 3313 55 33 11 33
13 13 13

33 33 33

2 22ˆˆ
2

A A A AA A A A A
B

A A A
δ ε

+ − + + − −  = − = − =  (16) 

and 

 

( ) ( )
( )

( )

( ) ( ) ( )
( )

2 2
13 55 33 55 11 33

13 13 13
33 33 55 33

2
13 55 11 55 33 55

33 33 55

2 2

2

A A A A A A
B

A A A A

A A A A A A
A A A

δ ε
+ − − −

= − = −
−

+ − − −
=

−

�

 (17) 

Similar expressions can be derived for both 12 23
ˆ ˆandB B , and 12 23andB B� � . However, it is 

more useful in possible related applications to retain the related forms 13B , 12 23andB B , 
equations (9) – (11), which are not normalized to any arbitrary quantity. 
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Returning to equation (8), it should be recalled that the modified quantities ijB are a 
measure of the deviation of the qP  phase velocity from the ellipsoidal. For a linearized 
weak anisotropy medium, these values should be quite small relative to the iiA  terms. It 
appears to be common practice (Pšenčík and Gajewski, 1998) to require that the terms in 
iiA  ( )1,2,3i =  are of about the same order of magnitude as the terms involving ijB . An 

isotropic background velocity, α , is introduced, essentially putting the iiA  terms into 
their perturbed form, 0

ii ii iiA A A≈ + ∆ , or equivalently, 2
ii iiA Aα≈ + ∆ . This is 

accomplished by adding and subtracting the quantity 

 ( )2 2 2 2
1 2 3n n nα + +  (18) 

to equation (8), yielding 

 ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2
11 1 22 2 11 3

2 2 2 2 2 2
12 1 2 13 1 3 23 2 32 2 +2

qPv A n A n A n

B n n B n n B n n

α α α α= + − + − + − +

+

n
 (19) 

or equivalently 

 
( ) ( ) ( ) ( )2 2 2 2 2 2

11 1 22 2 33 32 2
2 2 2

2 2 2 22 2
13 1 3 23 2 312 1 2

2 2 2

1

2 22 +

qP

A n A n A n
v

B n n B n nB n n

α α α
α

α α α

α α α

 − − −
= + + + +




+ 


n
 (20.a) 

Taking the square root of both sides of equation (20.a) and expanding the RHS in a 
binomial series, retaining only the leading terms results in 

 
( ) ( ) ( ) ( )2 2 2 2 2 2

11 1 22 2 33 3
2 2 2

2 2 2 22 2
13 1 3 23 2 312 1 2

2 2 2

1
2 2 2

+

qP

A n A n A n
v

B n n B n nB n n

α α α
α

α α α

α α α

 − − −
≈ + + + +




+ 


n
 (20.b) 

It is often the case that one of the iiA , ( )1,2,3i =  is assumed known and 

consequently the reference velocity, α , is set equal to iiA  ( )1, 2 or 3i =  , resulting in 
the loss of one term in equation (20.b). 

These last steps in the linearization of the qP phase velocity in an orthorhombic 
medium, going from equation (8) to (20.b), have been included to maintain a consistency 
with what appears in the literature. Additionally, the derivation of equation (20b) was 
thought to be of importance to show the difference that the introduction of equation (5) 
makes to the final formula; a perturbed ellipsoid, rather than the quartic equation (4) in 
which the assigning of a specific physical significance to the coefficients is difficult. It is 
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the linearized approximation given by equation (8) that will be used in a latter section to 
compare with the exact qP phase velocity in an orthorhombic anisotropic medium. 

LINEARIZED QS1 AND QS2 PHASE VELOCITIES 
The methodology described in Every and Sachse (1992), which will not be repeated 

here in any detail, involves the application of orthonormal rotation transformation 
matrices to the Cristoffel matrix Γ  to isolate either 22Γ�  or 33Γ� . This transformation is 
given by 

 rs pq rp sqa aΓ = Γ�  (21) 

and has been shown to be equivalent to the multiplication of the matrix Γ  by one of two 
vectors, 2e  or 3e . These vectors are required to be orthonormal to the qP  phase velocity 
vector, n , which is defined by 

 ( ) ( ) ( )1 2 3 11 12 13, , , , sin cos , sin sin , cosn n n e e e θ φ θ φ θ= = = =1n e  (22) 

The vectors 2e  and 3e  may be written in terms of the angles θ  and φ , and in terms of 
the components of the vector n as 

 
( ) ( )
( )

21 22 23

2
1 3 2 3 3

2
3

, , cos cos , cos sin , sin

, ,1

1

e e e

n n n n n

n

θ φ θ φ θ= = − −

− − −
=

−

2e

 (23) 

 
( ) ( )
( )

31 32 33

2 1

2
3

, , sin , cos ,0

, , 0

1

e e e

n n

n

φ φ= = −

−
=

−

3e

 (24) 

The choice of the vectors 2e  and 3e  is not arbitrary as certain conditions on the 
orthonormal vector triad  

 ( ) ( ), , , ,=2 3 1 2 3n e e e e e  (25) 

must be satisfied (Jech and Pšenčík, 1989). Some aspects of this method were dealt with 
by Vassiliou (1994). 

The definition of the ( )1, 2, 3i i =e  is given in Figure 1. This schematic indicates that 
the qP  and 1qS  phase velocity vectors are constrained to lie within the plane which is 
perpendicular to the ( )1 2,x x  plane and passing through the 3x  axis. The result is that the 

2qS  phase velocity vector is always normal to the plane containing the qP  and 1qS  
phase velocity vectors. 
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qS1 phase velocity in an orthorhombic medium 

For the leading shear wave, 1qS , 

 2rp pa e=  (26) 

 2sq qa e=  (27) 

The leading shear wave phase velocity is dependent on the second eigenvalue of the 
transformed Cristoffel matrix that has been rotated into the elements rsΓ� . Using the 
relations between the rotation matrices and the vector 2e  results in 

 22 2 2
,

pq p q
p q

e eΓ = Γ∑� . (28) 

Retaining only the first order term, the linearized leading shear wave phase velocity in 
terms of the density normalized ijA  that have the dimensions of velocity squared is 
obtained from 

 
1

2
22qSv = Γ�  (29) 

Introducing the vector 2e  results in equation (29) having the form 

 
1

2
22 2 2

,

11 21 21 22 22 22 33 23 23 12 23 22 13 21 23 23 22 232 2 2

qS pq p q
p q

v e e

e e e e e e e e e e e e

= Γ = Γ

= Γ + Γ + Γ + Γ + Γ + Γ

∑�
 (30) 

The non-zero elements pqΓ  of the matrix Γ  for an orthorhombic medium may be found 
in numerous works, for example, Musgrave (1970): 

 2 2 2
11 11 1 66 2 55 3A n A n A nΓ = + +  (31) 

 2 2 2
22 66 1 22 2 44 3A n A n A nΓ = + +  (32) 

 2 2 2
33 55 1 44 2 33 3A n A n A nΓ = + +  (33) 

 ( )23 32 23 44 2 3A A n nΓ = Γ = +  (34) 

 ( )13 31 13 55 1 3A A n nΓ = Γ = +  (35) 

 ( )12 21 12 66 1 2A A n nΓ = Γ = +  (36) 

Thus the linearized leading shear wave phase velocity may be written as 
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 ( )
( ) ( )

1

2 2 2 2 2 2 2
11 1 66 2 55 3 21 21 66 1 22 2 44 3 22 22

2 2 2
55 1 44 2 33 3 23 23 12 66 1 2 21 22

13 55 1 3 21 23 23 44 2 3 22 23

2

2 2

qSv A n A n A n e e A n A n A n e e

A n A n A n e e A A n n e e

A A n n e e A A n n e e

   = + + + + + +   
 + + + + + 

+ + +

 (37) 

Adding and subtracting the term 

 
( ) ( ) ( )11 33 1 3 21 23 22 33 2 3 22 23 11 22 1 2 21 22

66 1 2 21 22 55 1 3 21 23 44 2 3 22 232 2 2

A A n n e e A A n n e e A A n n e e

A n n e e A n n e e A n n e e

+ + + + + −          
− −

 (38) 

from equation (37, the following equation results 

 
( ) ( )
( ) ( )
( ) ( )

1

2 2 2
44 55

2 2 2 2
12 66 11 22

2 2 2
13 55 11 33

2 2 2
23 44 22 33

sin cos

2 2 2 sin cos cos sin

2 2 2 sin cos cos

2 2 2 sin cos sin

qSv A A

A A A A

A A A A

A A A A

φ φ

θ θ φ φ

θ θ φ

θ θ φ

= + +

+ − + −  
+ − + −  
+ − +  

 (39.a) 

or in a more compact form as 

 1

2 2 2 2 2 2 2
44 55 12

2 2 2 2 2 2
13 23

sin cos 2 sin cos cos sin

2 sin cos cos 2 sin cos sin
qSv A A B

B B

φ φ θ θ φ φ

θ θ φ θ θ φ

= + + −

−
 (39.b) 

where the ( )12,13, 23ijB ij =  were defined in the previous section.  

If 0φ =  then 

 ( ) ( )
1

2 2 2
55 13 55 11 332 2 2 sin cosqSv A A A A A θ θ= − + − +    (40.a) 

 
1

2 2 2
55 132 sin cosqSv A B θ θ= −  (40.b) 

and for 2φ π=  

 ( ) ( )
1

2 2 2
44 23 44 22 332 2 2 sin cosqSv A A A A A θ θ= − + − +    (41.a) 

 
1

2 2 2
44 232 sin cosqSv A B θ θ= −  (41.b) 

In addition, for both 0θ =  and 2θ π= , 

 
1

2 2 2
44 55sin cosqSv A Aφ φ= +  (42) 

It is clear from equations (40) – (42) that this mode of quasi–shear propagation is similar 
to the VqS  mode in a transversely isotropic medium, at least in the ( )1 3,x x  and ( )2 3,x x  
symmetry planes. 
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As in the qP  case, it is at times convenient to have the coefficients of all the terms in 
the equation for the 1qS  phase velocity of a similar magnitude. To accomplish this, add 
and subtract from equation (39.b) the term 

 ( )2 2 2cos sinβ φ φ+  (43) 

to yield 

 

( ) ( )
1

2 2
44 552 2 2 2

2 2

2 2 2 2 2 2 2
12 13

2 2

2 2 2
23

2

1 sin cos

2 sin cos cos sin 2 sin cos cos

2 sin cos sin

qS

A A
v

B B

B

β β
β φ φ

β β

θ θ φ φ θ θ φ
β β

θ θ φ
β

 − −
= + + +


− −





 (44) 

The linearization process may be completed by taking the square root of both sides of 
equation (44) and expanding the RHS in a binomial series, retaining only the leading 
terms, to obtain 

 

( ) ( )
1

2 2
44 552 2

2 2

2 2 2 2 2 2 2
12 13

2 2

2 2 2
23

2

1 sin cos
2 2

sin cos cos sin sin cos cos

sin cos sin

qS

A A
v

B B

B

β β
β φ φ

β β

θ θ φ φ θ θ φ
β β

θ θ φ
β

 − −
≈ + + +


− −





 (45) 

It is evident from the above derivation that the linearized qP phase velocity may be 
obtained in a similar manner. This would involve isolating 11Γ�  using rotation matrices 
associated with the vector = 1n e , resulting in 2

11qPv = Γ� . 

qS2 phase velocity in an orthorhombic medium  
From the introduction in the previous section on the qS1 phase velocity it may be 

determined (Every and Sachse, 1992) that the expression for the second shear wave phase 
velocity,

2qS
v , in an orthorhombic medium is related to the matrix element 33Γ�  in the 

same manner as 
1qS

v  is related to 22Γ� . From equations (21), (26) and (27) in the previous 
section the following relation, in terms of the vector 3e , is obtained 
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 33 3 3
,

pq p q
p q

e eΓ = Γ∑�  (46) 

Thus the linearized expression for the second quasi-shear phase velocity may be 
written as 

 2

2
33 3 3

,

11 31 31 22 32 32 12 31 322

qS pq p q
p q

v e e

e e e e e e

= Γ = Γ

= Γ + Γ + Γ

∑�
. (47) 

Introducing the expressions for the pqΓ  defined in equations (31) – (36) yields 

 
( )

2

2 2 2 2 2 2 2
11 1 66 2 55 3 31 31 66 1 22 2 44 3 32 32

12 66 1 2 31 322
qSv A n A n A n e e A n A n A n e e

A A n n e e

   = + + + + + +   
+

 (48) 

In this case, adding and subtracting the terms 

 ( )11 22 1 2 31 32 66 1 2 31 322A A n n e e A n n e e+ −  (49) 

from equation (48) results in the phase velocity for the second quasi – shear  wave being 
given as 

 
( ) ( )

2

2 2 2 2 2 2
44 55 66

2 2 2
12 66 11 22

cos cos cos sin sin

2 2 2 sin sin cos
qSv A A A

A A A A

θ φ θ φ θ

θ φ φ

= + + −

+ − +  
 (50.a) 

or equivalently, with 12B  defined by equation (9), 

 2

2 2 2 2 2 2
44 55 66

2 2 2
12

cos cos cos sin sin

2 sin sin cos
qSv A A A

B

θ φ θ φ θ

θ φ φ

= + + −
 (50.b) 

If 0φ = , then equation (50.b) reduces to 

 
2

2 2 2
44 66cos sinqSv A Aθ θ= + , (51) 

and, if 2φ π= , 

 
2

2 2 2
55 66cos sinqSv A Aθ θ= +  (52) 

while for 0θ =  

 
2

2 2 2
44 55cos sinqSv A Aφ φ= + , (53) 

and for 2θ π=  
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2

2
66qSv A= . (54) 

The preceding four equations indicate that this quasi – shear mode of wave 
propagation behaves like the HqS  mode in a transversely isotropic medium, again, in the 
( )1 3,x x  and ( )2 3,x x  symmetry planes. The behaviour in the ( )1 2,x x  plane cannot be 
placed in any category. 

In a manner similar to the previous two sections, the equalization of magnitudes of the 
coefficients of equation (50.b) is once again achieved by adding and subtracting the term 

 2 2 2 2 2 2cos cos cos sin sinβ θ φ θ φ θ + +   (55) 

from equation (50.b) to obtain 

 

( ) ( )

( )

2

2 2
44 552 2 2 2 2 2

2 2

2 2 2 2
66 2 12

2 2

1 cos cos cos sin

2 sin sin cossin

qS

A A
v

A B

β β
β θ φ θ φ

β β

β θ φ φθ
β β

 − −
= + + +


−
−


 (56) 

The linearization process requires taking the square root of equation (56) and 
expanding the RHS of the resulting equation in a binomial series, again retaining only the 
leading terms, to finally obtain 

 

( ) ( )

( )

2

2 2
44 552 2 2 2

2 2

2 2 2 2
66 2 12

2 2

1 cos cos cos sin
2 2

sin sin cossin
2

qS

A A
v

A B

β β
β θ φ θ φ

β β

β θ φ φθ
β β

 − −
≈ + + +


−
−


 (57) 

It has been convenient in the last shear wave cases to retain the ( ),θ φ  notation rather 

than the ( )2 3,i je e  notation as it provides more clarity in identifying the wave’s behaviour.  

As approximate (linearized) expressions have now been obtained for the three modes 
of elastic waves propagating in an orthorhombic anisotropic medium, a check on their 
accuracy will be performed using the exact expressions given by Every (1980) or 
Schoenberg and Helbig (1997). It should be noted that in deriving the exact expressions 
by solving a cubic equation with 3 real roots, the two shear modes for which exact 
expressions are given in the works cited above, are correctly named the " fast "  and 
"slow "  shear wave modes. There is not necessarily a one to one correspondence to the 

1qS  and 2qS  modes discussed above. This is due to the fact that the 1qS  and 2qS  shear 
wavefront surfaces may intersect one another, while the " fast "  shear mode in the exact 
formulation is always that, the fastest of the two shear modes, and the "slow"  shear 
mode is similar. Kiss singularities occur when these two wave surfaces are about to 
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intersect, resulting in some of the related formulae describing the two wave types 
becoming undefined at these points. 

NUMERICAL RESULTS 
The model used is a fairly significant modification of the example given in Pšenčík 

and Gajewski (1998), with the 21 parameter model downgraded to an orthorhombic input 
data set. It is defined in terms of the density normalized ( )2velocity  parameters, ijA , with 

dimensions of 2 2km s  as 

 

19.3 0.9 1.3 0 0 0
17.4 0.2 0 0 0

14.1 0 0 0
5.1 0 0

5.5 0
4.6

Model

 
 
 
 

=  
 
 
 
 

A  (58) 

To put the ( )12,13,23ijB ij =  in perspective with the ijA , the following numerical 
values obtained from equations (9) – (11) follow 

 ( ) ( ) 2 2
12 12 66 11 222 2 8.25 ( 0.585)B A A A A km s= + − + = − −  ( 9 ' ) 

 ( ) ( ) 2 2
13 13 55 11 332 2 4.4 ( 0.312)B A A A A km s= + − + = − −  (10' ) 

 ( ) ( ) ( )2 2
23 23 44 22 332 2 5.35 0.379B A A A A km s= + − + = − −  (11') 

The bracketed values are the ijB  made dimensionless by dividing each by 33A . 

The exact values of the qP , 1qS  and 2qS  phase velocities are computed using 
equations from Every (1980) or Schoenberg and Helbig (1997). The exact (red) results, 
together with the approximate velocities in black, derived in the text for the qP  phase 
velocity and given by Equation 18 are shown in Figures 2 and 4. 

The exact (red) and approximate (black) 1qS  and 2qS  phase velocities obtained from 
equations (39.b) and (50.b) are presented in Figures 3 and 5 for the same model used for 
the qP  case. The differences between the exact and approximate phase velocities are 
much more evident in Figures 1 and 2 due to the scale used on the vertical axis of the 
plots. 

CONCLUSIONS 

Using the linearized expressions for the qP , 1qS  and 2qS  phase velocities in an 
orthorhombic anisotropic medium as a starting point, alterations to the formulae were 
made to put them in a more indicative form. All ( ), 1, 2, , 6iiA i = …  terms in the phase 
velocities are of order 2 in the phase velocity vector components rather than order 4, 
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which the standard linearization procedure produces. The expressions for the phase 
velocities are all of a form such that they are ellipsoids with anellipsoidal correction 
terms, which are of order 4 in the phase velocity vector components. 

Compared with other expressions for these three phase velocities, which appear in 
numerous works in the literature, almost without exception in terms of ( ), , ,x y zµε µ =  

and ( ), , ,x y zµδ µ = , the formulae presented here are much less cumbersome. All 
quantities within the formulae can be associated with a physically measurable 
quantity.The results presented display the close match with the exact formulae. 
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FIG. 1.  Geometry of the phase velocity vectors used in the text. 
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FIG. 2.  qP phase velocities – red is exact and black is approximate. Azimuthal angles of 0, 4π  

and 2π  radians. Vertical scale enhances any mismatch. 
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FIG. 3.  qS1 and qS2 phase velocities – red is exact and black is approximate. Azimuthal angles 
of 0, 4π  and 2π . Vertical scale enhances any mismatch. 
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FIG. 4.  Polar plot of the same data used to produce the panels in Figure 1. 
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FIG. 5.  Polar plot of the same data used to produce the panels in Figure 2. 


