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Phase velocity approximations in a transversely isotropic 
medium 

P. F. Daley, E. S. Krebes and L. R. Lines 

ABSTRACT 

Two approaches and the subsequent results of approximations for phase velocities in 
transversely isotropic (TI) media are examined in the context of what has been termed 
weak anisotropy. What is addressed is the range of anisotropic complexity from general 
or exact, to mild or weak anelliptic and finally to linearized weak and the limits within 
which the approximations can be assumed to be applicable. In what follows, the term 
weak anelliptic anisotropy will not be synonymous with linearized weak anisotropy. The 
phase (wavefront normal) velocity is the quantity selected for this study, as it is perhaps 
that which is most often chosen as a candidate for approximation, from which other 
relevant, associated quantities may be derived or computed – including group (ray) 
velocity, polarization vectors and intermediate values associated with amplitude 
computations, reflection and transmission coefficients. The quasi-compressional, qP , 
and quasi-shear, VqS , are approximated in such a manner that they are dependent on two 
parameters – ellipticity and anellipticity. Both of these quantities are physically realizable 
and measurable. 

INTRODUCTION 

In Thomsen’s 1986 paper on transversely isotropic (TI) media, weak linearized 
approximations to the exact qP and VqS  phase (wave front normal) velocities are 
derived. The prefix q indicates quasi and is used to indicate that the associated 
polarization vectors are not, in general, aligned with either the ray, which indicates the 
direction of energy propagation, or the wavefront normal. The simplification of the phase 
velocities is equivalent to reducing the complexity of the associated eikonal equation. 
The derivation of the expression for the weak linearized form of the qP  phase velocity 
for an arbitrary anisotropic medium is discussed in Backus (1965), Pšenčík and Gajewski 
(1998), and Jech and Pšenčík (1989), among others. 

The exact eikonal equations for the qP  and VqS  modes of wave propagation in a TI 
medium are quasi-linear partial differential equations. These equations are homogeneous 
of order 2 in powers of the slowness vector components. As these partial differential 
equations are obtained from a hyperbolic system of equations (forms of the elastic wave 
equation) they may be employed to compute the characteristics of the system. In 
geophysical applications, these characteristics are most often referred to as rays, along 
which energy travels from a source to some point in a TI medium. This property of rays 
is a most powerful tool in seismic modeling. However, when an approximation is made 
such that the eikonal loses the above property of homogeneity of order 2 in powers of 
components of the slowness vector, the theory of characteristics is no longer applicable. 
It is convenient at this point to define a "mild "  anisotropic approximation to an eikonal 
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to be any approximation which preserves its homogeneous quasi-linear partial differential 
equation property (Schoenberg and Helbig, 1996). In a transversely isotropic medium this 
translates into a medium which may have any degree of ellipticity but is somewhat 
constrained in its anellipticity. A "mild "  anisotropic medium is not necessarily a 
"weak"anisotropic medium. 

As with any approximation, some indication of its range of applicability should be 
established. The advantages and disadvantages of the implementation of an 
approximation should be viewed in terms of both the intent of the approximation and the 
possible consequences of employing it. To investigate some of these points further, 
Thomsen’s derivation will be revisited. As well, an extension of the formulae presented 
in Gassmann (1964) will be looked at in more detail. The motivation for this is to 
establish the accuracy achieved by the approximations, at various stages in the 
linearization process, relative to the exact solution. 

A slight change in definition of the parameter δ  will be made from Thomsen’s 1986 
paper to provide modified linearized approximations for the qP  and VqS  phase velocities 
that are in terms of physically realizable quantities. Although it would be preferable to 
introduce the anisotropic parameters, ijC , using the density normalized ijA  notation 

( )ij ijA C ρ= , this may confuse matters excessively. Thus Thomsen’s notation will be 

retained and an alternative approximation involving ijA  that will be presented in a 
subsequent section will also be put in this notation. 

TI PHASE VELOCITY – THOMSEN’S LINEARIZATION  (MODIFIED) 

The eikonal equations for the quasi-compressional ( )qP  and quasi-shear ( )VqS  waves 
are functions of the horizontal and vertical components of the slowness vector, 

( ),p q=p , which may be written in terms of the phase (wavefront normal) angle, jθ , an 
acute angle measured from the vertical axis, and phase (wavefront normal) velocities, 

( ) ,j Vv j qP qSθ =   , as follows 

 ( ) ( )
sin cosj j

j j

p q
v v

θ θ
θ θ

= =
 (1) 

The exact expressions for the phase velocities, in ijA  (Voigt) notation, may be written as 
(Gassmann, 1964) 

 
( ) ( )

1/ 2
1/ 22 2

11 33sin cos 1 4 1
2qP D
Av A A αθ θ θ κ= +   + + −       (2) 

and 
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( ) ( )

1/ 2
1/ 2

44 1 4 1
2VqS D
Av A αθ κ= −  + −     (3) 

If the ijC  are designated as the anisotropic parameters of a medium, the associated 
density normalized parameters, having the dimensions of velocity squared, are given as 

 
ij ijA C ρ=

 (4) 

Aα and Dκ , both used above, require a definition. 

 
( ) ( )2 2

11 55 33 55sin cosA A A A Aα θ θ= − + −
  (5) 

and 

 

2 2

2

sin cosD
D

A
Aα

θ θκ =
 (6) 

with DA  being defined as 

 
( ) ( )( )2

13 55 11 55 33 55 .DA A A A A A A= + − − −
 (7) 

DA  is a true measure of the deviation of the wavefront from the ellipsoidal case in a 
transversely isotropic medium, or simply, the anellipticity. This may be seen by setting 

0DA =  in Equations 2 and 3. The phase velocities have been written in an exact form 
that are such that they are the square root of the sum of the square of the degenerate 
ellipsoidal velocity plus a term defining the deviation from the ellipsoidal case. As 
mentioned above, setting 0DA =  in Equations 2 and 3 for the qP  and VqS  phase 
velocities in ijA  results in 

 
( ) ( ) ( ) ( )1/ 22 2

11 33sin cos e
qP qPv A A vθ θθ θ= + =

 (8) 

 
( ) ( ) ( )55V V

e
qS qSv A vθ θ= =

 (9) 
The notation presented in Thomsen (1986) will be introduced here, as it is these 

parameters that most often appear in the more recent literature. The qP  phase velocity 
along the vertical, z, axis is 

 
0 33Aα =

 (10) 

while the VqS  phase velocity along both the horizontal and vertical, x and z, axes: 



Daley, Krebes, and Lines 

4 CREWES Research Report — Volume 16 (2004)  

 
0 55Aβ =

 (11) 
The measure of ellipticity of the qP  wavefront is given as 

 
11 33

332
A A

A
ε −=

 (12) 
In the initial and intermediate stages of this derivation, which appears in Thomsen 

(1986), the quantity *δ  is defined as 

 

( ) ( )( )

( ) ( )( )

( ) ( )

2
13 55 33 55 11 33 552

33

2
13 55 33 55 11 552

33

2 2
13 55 33 55

* 1 2 2
2

1
2

A A A A A A A
A

A A A A A A
A

A A A A

δ  = + − − + − 

 = + − − − + 

 + − − 

 (13) 

It is one of two parameters (the other being ε ) used to parameterize the ellipticity and 
anellipticity of the phase velocity front. At a later point in the derivation, *δ  is replaced 
by  

 
( )( )2 2

0 0
* 2 1δ δ ε β α= − −

. (14) 
The quantity δ  is defined in its now well-known form as 

 
( ) ( )

( )

2 2
13 55 33 55

33 33 552
A A A A

A A A
δ

+ − −
=

−  (15) 

The reason for the choice of the definitions of the dimensionless quantities ε  and δ  
to parameterize a TI medium is that δ ε=  corresponds to elliptical anisotropy. This 
immediately leads to 0δ ε− ≠  indicating that the medium is anelliptic and that ( )δ ε−  
is a measure of this. 

In Equation 15 the dimensionless quantities ε  and δ  have been normalized to the 
square of the qP phase velocity at vertical incidence, which will introduce a factor of 

2 2
33 55 0 0A A α β=  into the expression for the VqS  phase velocity. A slightly different 

definition of δ  will be introduced and for the present be designated as δ̂ . This new 
definition of *δ  in terms of δ̂  is given by 

 
( )( )* 2 2

0 0
ˆ2 1δ δ ε β α= + −

 (16) 

where here δ̂  is defined as 
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( ) ( )( )

( )

2
13 55 11 55 33 55

33 33 55

ˆ
2

A A A A A A
A A A

δ
+ − − −

=
− . (17) 

There are very minor differences between Equations 14 and 15, and the modified 
Equations 16 and 17. 

In the weak anisotropic limit ε  gives the deviation of the phase velocity surface from 
the spherical to the ellipsoidal, viz. 

 
( ) ( )2

11 33 331 2 1 , 1.0A A A forε ε ε= + ≈ + <<
 (18) 

which produces 

 
( ) 0 11 332 2 01 , ,A Aπ πα ε α α α≈ + = =

. (19) 

The velocity 2πα  is the qP  velocity along the x axis. As previously stated, ε , 
although a measure of the deviation of the energy (ray) surface from the spherical, is not 
an exact indication of this. As shown in both Equations 18 and 19, ε  is a reasonable 
approximation to this deviation only in the weak anisotropic limit. 

The exact expressions for the qP  and VqS  phase (wave front normal) velocities in 
Thomsen’s notation may be written as 

 
( ) ( )2 2 2

0
*1 sinqPv Dθ α ε θ θ = + +   (20) 

and 

 
( ) ( )

2 2
2 2 20 0

0 2 2
0 0

*1 sin
VqSv Dα αθ β ε θ θ

β β
 

= + − 
   (21) 

where  

( )
( )

( )
( )

1 / 2
2 22
0 02 2 40

2 22 2 2 2 2
0 0 0 0 0

*
* 4 11 4

1 1 sin cos sin 1
2 1 1

D
β α ε εβ δ

θ θ θ θ
α β α β α

− +
= − + + −

− −

       
      (22) 

Approximating ( )*D θ  by expanding the radical ( )1/ 21 1 2x x + ≈ +  , under the 

assumption that 1x << , and accordingly retaining only first order terms in (22) yields 
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( )
( )

( )
( )

2 22
0 02 2 40

2 22 2 2 2 2
0 0 0 0 0

*
* 2 11 21 sin cos sin

2 1 1
D

β α ε εβ δθ θ θ θ
α β α β α

 − +  ≈ − +  
− −     (23) 

A further approximation in which only the linear terms in ε  and *δ  are retained, 
specifically deleting the term in 2ε , results in 

 
( ) ( )

2 2 4
2 2
0 0

*
* sin cos sin

1
D δθ θ θ ε θ

β α
≈ +

−  (24) 

These two approximation steps are equivalent to expanding ( )*D θ  in a Taylor series 

in *δ  and ε  about ( ) ( )*, 0,0ε δ =  in the following manner 

( ) ( )
* *

* *
* * * *

*
0 0

: , : 0,0 D DD D
ε δ ε δ

θ ε δ θ
ε δ

ε δ
= = = =

∂ ∂≈ + +
∂ ∂

+"
 (25) 

This has the effect of removing the condition specified for the approximation to be 
termed mild as defined earlier in this report. The qP  and VqS  phase velocities may now 
be written as the approximate expressions 

 
( ) ( )

2 2 2 2 2 4
0 2 2

0 0

*
1 sin sin cos sin

1qPv δθ α ε θ θ θ ε θ
β α

 
 ≈ + + +

−    (26) 

and 

 
( ) ( )

2 2
2 2 2 2 2 40 0

0 2 2 2 2
0 0 0 0

*
1 sin sin cos sin

1VqSv α α δθ β ε θ θ θ ε θ
β β β α

  
  ≈ + − +

−     . (27) 

Introducing the expression for *δ  in terms of δ̂  at this point results in the qP  phase 
velocity having the form 

 ( ) ( )2 2 2 2 2 4
0

ˆ1 sin 2 sin cos sinqPv θ α ε θ δ ε θ θ ε θ ≈ + + + +   (28) 

or equivalently 

 
( ) ( ) 1/ 2

2 4
0

ˆ ˆ1 2 sin 2 sinqPv θ α δ ε θ δ θ ≈ + + −  . (29) 
Another binomial expansion yields a further (final) linearized approximate expression for 
the qP  phase velocity in the weak anisotropic limit if only the leading terms are retained, 

i.e., ( )1/ 21 1 2x x+ ≈ + , 
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( ) ( ) 2 4

0
ˆ ˆ1 sin sinqPv θ α δ ε θ δ θ ≈ + + −  . (30) 

For the case of the VqS  wave propagation the following sequence of algebraic steps leads 
to an analogous form of Thomsen’s final formula, in this instance  

 ( ) ( )
2 2

2 2 2 2 2 40 0
0 2 2

0 0

ˆ1 sin 2 sin cos sin
VqSv α αθ β ε θ δ ε θ θ ε θ

β β
  ≈ + − + +   

 (31) 

and, after some simplification, 

 
( )

1/ 22
2 20

0 2
0

ˆ1 2 sin cos
VqSv αθ β δ θ θ

β
 

≈ − 
  . (32) 

A binomial expansion retaining only the two leading terms results in the linearized 
equation 

 
( )

2
2 20

0 2
0

ˆ1 sin cos
VqSv αθ β δ θ θ

β
 

≈ − 
  . (33) 

Equations 30 and 33 differ from the results obtained using δ  (Equation 15) rather than 
the quantity δ̂  (Equation 17). 

It should be pointed out that δ̂  is identical to σ , defined in Daley and Lines (2004) as 

 ( ) ˆσ δ ε δ= − = . (34) 

This quantity σ  is the dimensionless anellipticity or deviation from the ellipsoidal of a 
ray or slowness surface. The dimensionality was removed earlier by introducing the qP  
related quantity, 2

33 0A α= , in the denominator. For this reason, the ratio 2 2
0 0 33 55A Aα β =  

appears in the VqS  phase velocity, and associated quantities. Using the notation given in 
(34), with Thomsen’s 1986 equivalent expressions given for reference purposes, 
Equations 30 and 33 may be written as  

 
( ) ( ) 2 4

0 1 sin sinqPv θ α ε σ θ σ θ ≈ + + −   (35) 

 
( ){ }2 2 4

0 Thomsen
1 sin cos sinqPv θ α δ θ θ ε θ ≈ + +   

( )35'
 

and 
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( )

2
2 20

0 2
0

1 sin cos
VqSv αθ β σ θ θ

β
 

≈ − 
   (36) 

 
( ) ( )

2
2 20

0 2
0 Thomsen

1 sin cos
VqSv αθ β ε δ θ θ

β
   ≈ + −  
     

( )36'
 

or equivalently, 

 
( )

2 2
2 40 0

0 2 2
0 0

1 sin sin
VqSv α αθ β σ θ σ θ

β β
 

≈ − + 
  . (37) 

Some may prefer this parameterization of the linearized qP  and VqS  phase velocities 
in terms of ε  and σ , as both are physically realizable quantities. Formulae involving 
them are more indicative of the dependencies on ellipticity and anellipticity. An example 
is the expression for the VqS  phase velocity, which in reality is not dependent on the 
ellipticity, ε , while the qP phase velocity, as indicated above, is dependent on both 
ellipticity and anellipticity. This is clear from viewing Equations 35 – 37. If the ( ),ε δ  
parameterization had been used, this would not be immediately apparent. 

PHASE VELOCITY APPROXIMATION (GASSMANN) 

In this section the qP  and VqS  phase velocities will be simplified in a slightly 
different manner. Weak anisotropy will be assumed initially, and certain approximations 
consistent with that assumption will be made before the linearizing process by expansion 
in a Taylor series is undertaken. Using Equations 2 and 3 as the definitions of the exact 
expressions of the qP  and VqS  phase velocities and, as before, defining the degenerate 
ellipsoidal phase velocities as 

 
( ) 1/ 22 2

11 33sin cose
qPv A Aθ θ = +   (38) 

for the qP case and  

 
( )

55V

e
qSv A=

 (39) 

for VqS  wave propagation. By manipulating certain quantities in the expressions for the 
exact expression for the qP phase velocity, the following quantity arises  

 
( )

( ) 2

1 4 1
1 1

2

D

e
qP

A

v

α
α

κ
κ

+ −
= + −

 
 

 (40) 

where the following three terms require definition (Equations 4, 5 and 6) are restated here 
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( ) ( )2 2

11 55 33 55sin cosA A A A Aα θ θ= − + −
 (41) 

 

2 2

2

sin cosD
D

A
Aα

θ θκ =
 (42) 

 
( ) ( )( )2

13 55 11 55 33 55DA A A A A A A= + − − −
 (43) 

and ( )e
qPv  is defined in Equation 38. The exact expression for the qP phase velocity may be 

written in the more compact form 

 ( ) ( ) ( )1e
qP qPv v αθ κ= + , (44) 

or equivalently, 

 
( ) ( ) ( )

2 22 1e
qP qPv v αθ κ = +  . (45) 

For DA  sufficiently small (a weakly anelliptic TI medium), the following 
approximations to ακ  may be made 

 ( ) ( ) ( )

2 2

2 2 2

sin cos1 1
2 2

D D D

e e e
qP qP qP

A A A

v v A v
α α

α

α

κ κ θ θκ ≈ + − ≈ =
     
     

. (46) 

In the VqS  case the term comparable to ακ  is  

 
( )

( ) 2

1 4 1
1 1

2
V

D

e
qS

A

v

α
β

κ
κ

+ −
= − −

 
 

, (47) 

and it follows that the VqS  phase velocity may be written as 

 ( ) ( ) ( )1
V V

e
qS qSv v βθ κ= + , (48) 

or again as in the qP  case 

 
( ) ( ) ( )2 22 1

V V

e
qS qSv v βθ κ = +   (49) 

where, as in Equation 41, βκ  may, for DA  sufficiently small, be estimated as  
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 ( ) ( ) ( )

2 2

2 2 2

sin cos1 1
2 2

V V V

D D D

e e e
qS qS qS

A A A

v v A v
α α

β

α

κ κ θ θκ ≈ − − ≈ − = −
     
     

 (50) 

where all terms in Equation 50 have been previously defined. The reason for including 
Equations 45 and 49 will be discussed later in this section. 

The linearization process will now be continued using Equations 44 and 48. It is required 
to expand the qP  phase velocity expression (Equation 44) in a Taylor series for small 
angles, 2 2sin 0x θ= ∼ . As this step is for comparison purposes the first three terms will 
be retained to show equivalence with those equations rederived in the previous section. 

 
( ) ( ) ( ) ( ) ( ) ( )2

2 2

2
2 2 4

220 2
0 0

11
2

e qP qP
qP qP qP x

x x

dv d v
v v v x x x

d x d x
αθ κ

=
= =

= + ≈ + + + …
 (51) 

After some algebraic manipulation and, as in Equation 24 of the previous section, 
neglecting terms in 2ε , the weak anisotropic approximation is given as 

( ) ( )
( ) ( )

11 33 2 4
33

33 33 33 55 33 33 552 2 2
D D

qP

A A A Av A x x
A A A A A A A

θ
   −

≈ + + + +   
− −      

…
(52) 

Introducing the definitions of 0α , ε andδ  results in 

 

( ) ( ) ( )( )
( )

( )( )
( )

11 33 33 33 55 2
0

33 33 33 55

33 33 55 4

33 33 55

2
1

2 2

2
.

2

qP

A A A A A
v x

A A A A

A A A
x

A A A

δ ε
θ α

δ ε

  − − −
≈ + + −   −  

 − −
  −   

 (53) 

Finally, using ( ),ε σ  ( )ˆ,ε δ 
   notation and replacing 2x  by 2sin θ , the following 

equation is obtained 

 
( ) ( ) 2 4

0 1 sin sinqPv θ α ε σ θ σ θ ≈ + + −  . (54) 
In a similar manner it can be shown that, starting with 

 ( ) ( ) ( ) ( )551 1
V V

e
qS qSv v Aβ βθ κ κ= + = + , (55) 

with ( )
55V

e
qSv A=  in this case and expanding in a Taylor series about 2 2sin 0x θ= ≈ , 

retaining only the first three terms, yields 
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( ) ( ) ( )2 2 2 2 2 4

0 0 0 0 01 sin sin .
VqSv θ β α β σ θ α β σ θ ≈ − +   (56) 

Equations 54 and 56 are identical, to terms of second order, with those presented in the 
previous section. 

Returning now to the exact Equations 45 and 49 and implementing the weak anellipticity 
approximations to ακ  and βκ  ( )and 1α βκ κ <<  derived in Equations 46 and 50 results 

in the following expressions for the qP  and VqS  phase velocities 

 
( ) ( ) ( ) ( )

2 22 22 sin cos1 2e e D
qP qP qP

Av v v
Aα

α

θ θθ κ   ≈ + = +     (57) 
and 

 
( ) ( ) ( ) ( )

2 22 22 sin cos1 2
V V V

e e D
qS qS qS

Av v v
Aβ

α

θ θθ κ   ≈ + = −     (58) 
where all terms in the equations have been previously defined in this section. Rewriting 
these two equations in terms of the vertical and horizontal components of slowness, p  
and q , employing the definitions given in terms of the phase velocities as 

( )sin j jp vθ θ=  and ( )cos j jq vθ θ= , , Vj qP qS=    results in the qP  and VqS  

eikonal equations, 1
VqP qSG = , for a mild anisotropic medium, having the forms 

 
( ) ( ) ( )

2 2
2 2

11 33 2 2
11 55 33 55

, 1D
qP

A p qG p q A p A q
A A p A A q

= + + =
− + −  (59) 

and 

 
( ) ( ) ( ) ( )

2 2
2 2

55 2 2
11 55 33 55

, 1
V

D
qS

A p qG p q A p q
A A p A A q

= + − =
− + − . (60) 

These two eikonals satisfy the definition given in a previous section for a mildly 
anisotropic medium in that they are both homogeneous of powers of 2 in terms of the 
slowness vector components. This allows these eikonal equations to be used in 
derivations in which the theory of characteristics is incorporated, such as the 
determination of ray trajectories from a point within a medium. The form of the above 
two eikonal equations is indicative of the associated slowness surfaces: ellipsoids of 
revolution and spheres with an additional term, linear in the anellipticity DA σ∝  

( )( )σ δ ε= − , that results in anelliptic deformation. Although these eikonals are useful 
from a tutorial perspective, in practice, the exact eikonal equations are not much more 
difficult to implement in the solutions of related problems that are usually less analytical 
than computational. To summarize, "mild" anisotropy does not, in general, mean 
"weak" anisotropy. However, "mild" anisotropy does indicate weak-anellipticity. 
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NUMERICAL RESULTS AND DISCUSSION 

The models selected for the computation and comparison of phase velocities using 
differing degrees of approximations are Dog Creek shale and Mesaverde clay - shale. The 
first may be classified as a weak anisotropic material while the second stretches this 
definition somewhat. However, it will be retained to act as an indicator of the accuracy of 
the formulae presented. The anisotropic parameters describing these two media are taken 
from Thomsen (1986) and given as 
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These examples were chosen to illustrate the differences between a weak anelliptic 
(mild anisotropic) approximation and a linearized weak anisotropic TI approximation. 
Figures 1 and 2 use the weak linearized expressions for the qP  and VqS  phase velocities 
given by Equations 35 and 37 and are compared to the exact expressions from Equations 
2 and 3 for the Dog Creek shale model. The weak anelliptic approximation (Equations 
44, 48 with the approximations (Equations 46 and 50) implemented) for this model are 
not shown as they are almost indistinguishable from the exact phase velocities. 

The weak linearized anisotropic approximations to the qP  and VqS  phase velocities 
for the Mesaverde clay - shale model are shown in Figures 4 and 6, where they are 
compared with the exact expressions. The weak anelliptic approximations are compared 
with the exact expressions are presented in Figures 3 and 5. 

It becomes clear from viewing this last set of four figures that there is a significant 
difference between the weak anelliptic and linearized weak approximations to the phase 
velocities. As the linearized weak velocities are often used in obtaining group velocities 
and angles, the possible consequences of utilizing approximations of any level of 
complexity should be stated, as indicated by this limited study of the matter. 
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FIG. 1.  A comparison of the weak linearized anisotropic and exact qP  phase velocities for Dog 
Creek shale. 

CONCLUSIONS 

The derivation of approximations to the qP  and VqS  phase velocities for a 
transversely isotropic medium is revisited. Starting with the exact expressions for these 
quantities, two alternate approaches are taken to arrive at the same results. The 
linearization method employed by Thomsen (1986) is reproduced with a modification 
that puts the final equations in a form that is dependent on the physically realizable 
quantities associated with the ellipticity and anellipticity of the phase velocity surfaces 
(the VqS  phase velocity being independent of the ellipticity). The dependence on the 
previously used parameter δ  was removed - because of its categorization as “intuitively 
inaccessible” it was reasoned that an alternative was desirable to be proposed. To 
complement the above derivation, the equations presented in Gassmann (1964) were used 
to produce weak anelliptic (mild anisotropic) and weak linearized anisotropic 
approximations for the qP  and VqS  phase velocities in a transversely isotropic medium. 
Two physical models of different degrees of anisotropy were chosen to graphically show 
the differences of the approximations when compared with the exact phase velocities. 
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FIG. 2.  A comparison of the weak linearized anisotropic and exact VqS  phase velocities for Dog 
Creek shale. 

REFERENCES 

Backus, G.E., 1965. Possible forms of seismic anisotropy of the uppermost mantle under oceans, Journal of 
Geophysical Research, 70, 3429-3439. 

Daley, P.F. and Lines, L.R., 2004. Linearized quantities in T.I. media, Canadian Journal of Earth Sciences, 
41, 349-354. 

Gassmann, F., 1964. Introduction to seismic travel time methods in anisotropic media, Pure and Applied 
Geophysics, 58, 63-112. 

Jech, J. and Pšenčík, I., 1989. First order perturbation method for anisotropic media, Geophys J. Int., 99, 
369-376. 

Pšenčík, I. and Gajewski, D., 1998. Polarization, phase velocity and NMO velocity of qP  waves in 
arbitrary weak anisotropic media, Geophysics, 63, 1754-1766. 

Schoenberg, M. and Helbig, K., 1996. Orthorhombic media: Modeling elastic wave behavior in a vertically 
fractured earth, Geophysics, 62, 1954-1974. 

Thomsen, L., 1986. Weak elastic anisotropy, Geophysics, 51, 1954-1966 



Velocity approximations 

 CREWES Research Report — Volume 16 (2004) 15 

  

FIG. 3.  Mesaverde clay – shale: A comparison of the weak anelliptic and exact qP  phase 
velocities. 

 

FIG. 4.  Mesaverde clay – shale: A comparison of the weak linearized anisotropic and exact qP  
phase velocities. 
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FIG. 5. Mesaverde clay – shale: A comparison of the weak anelliptic and exact VqS  phase 
velocities. 

 

FIG. 6.  Mesaverde clay – shale, comparison of the weak linearized anisotropic and exact VqS  
phase velocities. 


